Skip to main content
Log in

10-Hertz squeezed light source generation on the cesium D2 line using single photon modulation

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Generation of squeezed light source is a promising technique to overcome the standard quantum limit in precision measurement. Here, we demonstrate an experimental generation of quadrature squeezing resonating on the cesium D2 line down to 10 Hz for the first time. The maximum squeezing in audio frequency band is 5.57 dB. Moreover, we have presented a single-photon modulation locking to control the squeezing angle, while effectively suppressing the influence of laser noise on low-frequency squeezing. The whole system operates steadily for hours. The generated low-frequency squeezed light source can be applied in quantum metrology, light-matter interaction investigation and quantum memory in the audio frequency band and even below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, Observation of squeezed states generated by four-wave mixing in an optical cavity, Phys. Rev. Lett. 55(22), 2409 (1985)

    Article  ADS  Google Scholar 

  2. N. Gisin and R. Thew, Quantum communication, Nat. Photon. 1(3), 165 (2007)

    Article  ADS  Google Scholar 

  3. X. J. Jia, Z. H. Yan, Z. Y. Duan, X. L. Su, H. Wang, C. D. Xie, and K. C. Peng, Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths, Phys. Rev. Lett. 109(25), 253604 (2012)

    Article  ADS  Google Scholar 

  4. C. J. Liu, W. Ye, W. D. Zhou, H. L. Zhang, J. H. Huang, and L. Y. Hu, Entanglement of coherent superposition of photon-subtraction squeezed vacuum, Front. Phys. 12(5), 120307 (2017)

    Article  ADS  Google Scholar 

  5. L. Tian, S. P. Shi, Y. H. Tian, Y. J. Wang, Y. H. Zheng, and K. C. Peng, Resource reduction for simultaneous generation of two types of continuous variable nonclassical states, Front. Phys. 16(2), 21502 (2021)

    Article  ADS  Google Scholar 

  6. K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, Storage and retrieval of a squeezed vacuum, Phys. Rev. Lett. 100(9), 093601 (2008)

    Article  ADS  Google Scholar 

  7. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, Quantum memory for squeezed light, Phys. Rev. Lett. 100(9), 093602 (2008)

    Article  ADS  Google Scholar 

  8. J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, Spin squeezed atoms: A macroscopic entangled ensemble created by light, Phys. Rev. Lett. 83(7), 1319 (1999)

    Article  ADS  Google Scholar 

  9. A. Dantan and M. Pinard, Quantum-state transfer between fields and atoms in electromagnetically induced transparency, Phys. Rev. A 69(4), 043810 (2004)

    Article  ADS  Google Scholar 

  10. N. Otterstrom, R. C. Pooser, and B. J. Lawrie, Nonlinear optical magnetometry with accessible in situ optical squeezing, Opt. Lett. 39(22), 6533 (2014)

    Article  ADS  Google Scholar 

  11. X. Y. Hu, C. P. Wei, Y. F. Yu, and Z. M. Zhang, Enhanced phase sensitivity of an SU(1, 1) interferometer with displaced squeezed vacuum light, Front. Phys. 11(3), 114203 (2016)

    Article  ADS  Google Scholar 

  12. R. C. Pooser and B. Lawrie, Ultrasensitive measurement of microcantilever displacement below the shot-noise limit, Optica 2(5), 393 (2015)

    Article  ADS  Google Scholar 

  13. P. Grangier, R. E. Slusher, B. Yurke, and A. LaPorta, Squeezed-light-enhanced polarization interferometer, Phys. Rev. Lett. 59(19), 2153 (1987)

    Article  ADS  Google Scholar 

  14. J. Liu, Y. Yu, C. Y. Wang, Y. Chen, J. W. Wang, H. X. Chen, D. We, H. Gao, and F. L. Li, Optimal phase sensitivity by quantum squeezing based on a Mach-Zehnder interferometer, New J. Phys. 22(1), 013031 (2020)

    Article  ADS  Google Scholar 

  15. Y. Zhang, Generation of non-classical states from an optical parametric oscillator/amplifier and their applications, Front. Phys. China 3(2), 126 (2008)

    Article  ADS  Google Scholar 

  16. T. Serikawa, J. I. Yoshikawa, K. Makino, and A. Frusawa, Creation and measurement of broadband squeezed vacuum from a ring optical parametric oscillator, Opt. Express 24(25), 28383 (2016)

    Article  ADS  Google Scholar 

  17. M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB, Opt. Express 19(25), 25763 (2011)

    Article  ADS  Google Scholar 

  18. R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, Quantum metrology for gravitational wave astronomy, Nat. Commun. 1(1), 121 (2010)

    Article  ADS  Google Scholar 

  19. M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H. A. Bachor, and W. P. Bowen, Biological measurement beyond the quantum limit, Nat. Photon. 7(3), 229 (2013)

    Article  ADS  Google Scholar 

  20. D. Budker and M. Romalis, Optical magnetometry, Nat. Photon. 3(4), 227 (2007)

    Google Scholar 

  21. D. Akamatsu, K. Akiba, and M. Kozuma, Electromagnetically induced transparency with squeezed vacuum, Phys. Rev. Lett. 92(20), 203602 (2004)

    Article  ADS  Google Scholar 

  22. C. Xu, L. D. Zhang, S. T. Huang, T. X. Ma, F. Liu, H. Yonezawa, Y. Zhang, and M. Xiao, Sensing and tracking enhanced by quantum squeezing, Photon. Res. 7(6), A14 (2019)

    Article  Google Scholar 

  23. W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, Quantum noise limited and entanglement-assisted magnetometry, Phys. Rev. Lett. 104(13), 133601 (2010)

    Article  ADS  Google Scholar 

  24. T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, Quantum-enhanced magnetometer with low-frequency squeezing, Phys. Rev. A 86(2), 023803 (2012)

    Article  ADS  Google Scholar 

  25. The LIGO Scientific Collaboration, A gravitational wave observatory operating beyond the quantum shot-noise limit, Nat. Phys. 7(12), 962 (2011)

    Article  Google Scholar 

  26. S. S. Y. Chua, B. J. J. Slagmolen, D. A. Shaddock, and D. E. McClelland, Quantum squeezed light in gravitational-wave detectors, Class. Quantum Grav. 31(18), 183001 (2014)

    Article  ADS  Google Scholar 

  27. M. Tse, H. Yu, N. Kijbunchoo, A. Fernandez-Galiana, P. Dupej, et al., Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy, Phys. Rev. Lett. 123(23), 231107 (2019)

    Article  ADS  Google Scholar 

  28. L. L. Bai, X. Wen, Y. L. Yang, L. L. Zhang, J. He, Y. H. Wang, and J. M. Wang, Quantum-enhanced rubidium atomic magnetometer based on Faraday rotation via 795 nm Stokes operator squeezed light, J. Opt. 23(8), 085202 (2021)

    Article  ADS  Google Scholar 

  29. B. B. Li, J. Bílek, U. Hoff, L. Madsen, S. Forstner, V. Prakash, C. Schäfermeier, T. Gehring, W. Bowen, and U. Andersen, Quantum enhanced optomechanical magnetometry, Optica 5(7), 850 (2018)

    Article  ADS  Google Scholar 

  30. F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, Squeezed-light optical magnetometry, Phys. Rev. Lett. 105(5), 053601 (2010)

    Article  ADS  Google Scholar 

  31. K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland, Technical limitations to homodyne detection at audio frequencies, Appl. Opt. 46(17), 3389 (2007)

    Article  ADS  Google Scholar 

  32. M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, Balanced homodyne detection of optical quantum states at audio-band frequencies and below, Class. Quantum Gravity 29(14), 145015 (2012)

    Article  ADS  Google Scholar 

  33. K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, Squeezing in the audio gravitational-wave detection band, Phys. Rev. Lett. 93(16), 161105 (2004)

    Article  ADS  Google Scholar 

  34. H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, Quantum engineering of squeezed states for quantum communication and metrology, New J. Phys. 9(10), 371 (2007)

    Article  ADS  Google Scholar 

  35. W. P. Bowen, R. Schnabel, N. Treps, H. A. Bachor, and P. K. Lam, Recovery of continuous wave squeezing at low frequencies, J. Opt. B 4(6), 421 (2002)

    Article  ADS  Google Scholar 

  36. K. McKenzie, M. B. Gray, S. Goßler, P. K. Lam, and D. E. McClelland, Squeezed state generation for interferometric gravitational-wave detection, Class. Quantum Grav. 23(8), S245 (2006)

    Article  ADS  Google Scholar 

  37. R. Schnabel, H. Vahlbruch, A. Franzen, S. Chelkowski, N. Grosse, H. A. Bachor, W. P. Bowen, P. K. Lam, and K. Danzmann, Squeezed light at sideband frequencies below 100 kHz from a single OPA, Opt. Commun. 240(1–3), 185 (2004)

    Article  ADS  Google Scholar 

  38. E. Oelker, G. Mansell, M. Tse, J. Miller, F. Matichard, L. Barsotti, P. Fritschel, D. E. McClelland, M. Evans, and N. Mavalvala, Ultra-low phase noise squeezed vacuum source for gravitational wave detectors, Optica 3(7), 682 (2016)

    Article  ADS  Google Scholar 

  39. K. McKenzie, E. E. Mikhailov, K. Goda, P. K. Lam, N. Grosse, M. B. Gray, N. Mavalvala, and D. E. McClelland, Quantum noise locking, J. Opt. B 7(10), S421 (2005)

    Article  ADS  Google Scholar 

  40. F. Torabi-Goudarzi, and E. Riis, Efficient CW high-power frequency doubling in periodically poled KTP, Opt. Commun. 227(4–6), 389 (2003)

    Article  ADS  Google Scholar 

  41. X. Wen, Y. S. Han, J. Y. Liu, J. He, and J. M. Wang, Polarization squeezing at the audio frequency band for the rubidium D1 line, Opt. Express 25(17), 20737 (2017)

    Article  ADS  Google Scholar 

  42. J. F. Tian, G. H. Zuo, Y. C. Zhang, G. Li, P. F. Zhang, and T. C. Zhang, Generation of squeezed vacuum on cesium D2 line down to kilohertz range, Chin. Phys. B 26(12), 124206 (2017)

    Article  ADS  Google Scholar 

  43. S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, Vacuum squeezed light for atomic memories at the D2 cesium line, Opt. Express 17(5), 3777 (2009)

    Article  ADS  Google Scholar 

  44. C. J. Liu, J. T. Jing, Z. F. Zhou, R. C. Pooser, F. Hudelist, and W. P. Zhang, Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor, Opt. Lett. 36(15), 2979 (2011)

    Article  ADS  Google Scholar 

  45. R. Ma, W. Liu, Z. Z. Qin, X. L. Su, X. J. Jia, J. X. Zhang, and J. R. Gao, Compact sub-kilohertz low-frequency quantum light source based on four-wave mixing in cesium vapor, Opt. Lett. 43(6), 1243 (2018)

    Article  ADS  Google Scholar 

  46. L. McCuller, C. Whittle, D. Ganapathy, K. Komori, M. Tse, A. Fernandez-Galiana, L. Barsotti, P. Fritschel, M. MacInnis, F. Matichard, K. Mason, N. Mavalvala, R. Mittleman, H. Yu, M. E. Zucker, and M. Evans, Frequency dependent squeezing for advanced LIGO, Phys. Rev. Lett. 124(17), 171102 (2020)

    Article  ADS  Google Scholar 

  47. K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, Experimental demonstration of a squeezing-enhanced power-recycled Michelson interferometer for gravitational wave detection, Phys. Rev. Lett. 88(23), 231102 (2002)

    Article  ADS  Google Scholar 

  48. F. Liu, Y. Y. Zhou, J. Yu, J. L. Guo, Y. Wu, S. X. Xiao, D. Wei, Y. Zhang, X. Jia, and M. Xiao, Squeezing-enhanced fiber Mach-Zehnder interferometer for low-frequency phase measurement, Appl. Phys. Lett. 110(2), 021106 (2017)

    Article  ADS  Google Scholar 

  49. Y. Q. Guo, H. J. Zhang, X. M. Guo, Y. C. Zhang, and T. C. Zhang, High-order continuous-variable coherence of phase-dependent squeezed state, Opt. Express 30(6), 8461 (2022)

    Article  ADS  Google Scholar 

  50. W. P. Bowen, R. Schnabel, H. A. Bachor, and P. K. Lam, Polarization squeezing of continuous variable stokes parameters, Phys. Rev. Lett. 88(9), 093601 (2002)

    Article  ADS  Google Scholar 

  51. H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, Coherent control of vacuum squeezing in the gravitational-wave detection band, Phys. Rev. Lett. 97(1), 011101 (2006)

    Article  ADS  Google Scholar 

  52. Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement, Opt. Express 15(7), 4321 (2007)

    Article  ADS  Google Scholar 

  53. S. A. Haine, M. K. Olsen, and J. J. Hope, Generating controllable atom-light entanglement with a Raman atom laser system, Phys. Rev. Lett. 96(13), 133601 (2006)

    Article  ADS  Google Scholar 

  54. C. Troullinou, R. Jiménez-Martínez, J. Kong, V. G. Lucivero, and M. W. Mitchell, Squeezed-light enhancement and backaction evasion in a high sensitivity optically pumped magnetometer, Phys. Rev. Lett. 127(19), 193601 (2021)

    Article  ADS  Google Scholar 

  55. M. T. L. Hsu, G. Hétet, O. Glöckl, J. J. Longdell, B. C. Buchler, H. A. Bachor, and P. K. Lam, Quantum study of information delay in electromagnetically induced transparency, Phys. Rev. Lett. 97(18), 183601 (2006)

    Article  ADS  Google Scholar 

  56. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, Quantum memory for squeezed light, Phys. Rev. Lett. 100(9), 093602 (2008)

    Article  ADS  Google Scholar 

  57. J. Junker, D. Wilken, N. Johny, D. Steinmeyer, and M. Heurs, Frequency-dependent squeezing from a detuned squeezer, Phys. Rev. Lett. 129(3), 033602 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. U21A6006, 11634008, 61875147, and 62175176) and the National Key Research and Development Program of China (No. 2017YFA0304502).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Qiang Guo or Tian-Cai Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, GH., Zhang, YC., Li, G. et al. 10-Hertz squeezed light source generation on the cesium D2 line using single photon modulation. Front. Phys. 18, 32301 (2023). https://doi.org/10.1007/s11467-022-1246-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1246-2

Keywords

Navigation