Skip to main content
Log in

Enhanced phase sensitivity of an SU(1,1) interferometer with displaced squeezed vacuum light

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We study the phase sensitivity of an SU(1,1) interferometer with two input beams in the displaced squeezed vacuum state and the coherent state, respectively. We find that there exists an optimal squeezing fraction of the displaced squeezed vacuum state that optimizes the phase sensitivity. We also examine the effects of some factors, including the loss, mean photon number of the input beams and amplitude gain of the optical parameter amplifiers, on the optimal squeezing fraction so that we can choose the optimal values to enhance the phase sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. C. Sanders and G. J. Milburn, Optimal quantum measurements for phase estimation, Phys. Rev. Lett. 75(16), 2944 (1995)

    Article  ADS  Google Scholar 

  2. R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kolodyński, Quantum limits in optical interferometry, Progress in Optics 60, 345 (2015)

    Article  Google Scholar 

  3. C. Lee, J. Huang, H. Deng, H. Dai, and J. Xu, Nonlinear quantum interferometry with Bose condensed atoms, Front. Phys. 7(1), 109 (2012)

    Article  Google Scholar 

  4. C. M. Caves, Quantum-mechanical noise in an interferometer, Phys. Rev. D 23(8), 1693 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  5. R. S. Bondurant and J. H. Shapiro, Squeezed states in phasesensing interferometers, Phys. Rev. D 30(12), 2548 (1984)

    Article  ADS  Google Scholar 

  6. M. J. Holland and K. Burnett, Interferometric detection of optical phase shifts at the Heisenberg limit, Phys. Rev. Lett. 71(9), 1355 (1993)

    Article  ADS  Google Scholar 

  7. O. Steuernagel and S. Scheel, Approaching the Heisenberg limit with two-mode squeezed states, J. Opt. B 6(3), S66 (2004)

    Article  ADS  Google Scholar 

  8. H. Lee, P. Kok, and J. P. Dowling, A quantum Rosetta stone for interferometry, J. Mod. Opt. 49(14–15), 2325 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Joo, W. J. Munro, and T. P. Spiller, Quantum metrology with entangled coherent states, Phys. Rev. Lett. 107(8), 083601 (2011)

    Article  ADS  Google Scholar 

  10. C. C. Gerry, Heisenberg-limit interferometry with four-wave mixers operating in a nonlinear regime, Phys. Rev. A 61(4), 043811 (2000)

    Article  ADS  Google Scholar 

  11. C. C. Gerry, A. Benmoussa, and R. A. Campos, Nonlinear interferometer as a resource for maximally entangled photonic states: Application to interferometry, Phys. Rev. A 66(1), 013804 (2002)

    Article  ADS  Google Scholar 

  12. G. A. Durkin and J. P. Dowling, Local and global distinguishability in quantum interferometry, Phys. Rev. Lett. 99(7), 070801 (2007)

    Article  ADS  Google Scholar 

  13. M. A. Rubin and S. Kaushik, Loss-induced limits to phase measurement precision with maximally entangled states, Phys. Rev. A 75(5), 053805 (2007)

    Article  ADS  Google Scholar 

  14. G. Gilbert, M. Hamrick, and Y. S. Weinstein, Practical quantum interferometry using photonic N00N states, Proc. SPIE 6573, 65730K (2007)

    Article  ADS  Google Scholar 

  15. K. Jiang, C. J. Brignac, Y. Weng, M. B. Kim, H. Lee, and J. P. Dowling, Strategies for choosing path-entangled number states for optimal robust quantum-optical metrology in the presence of loss, Phys. Rev. A 86(1), 013826 (2012)

    Article  ADS  Google Scholar 

  16. S. D. Huver, C. F. Wildfeuer, and J. P. Dowling, Entangled Fock states for robust quantum optical metrology, imaging, and sensing, Phys. Rev. A 78(6), 063828 (2008)

    Article  ADS  Google Scholar 

  17. J. Fiurášek, Conditional generation of N-photon entangled states of light, Phys. Rev. A 65(5), 053818 (2002)

    Article  ADS  Google Scholar 

  18. M. D. Lang and C. M. Caves, Optimal quantum-enhanced interferometry using a laser power source, Phys. Rev. Lett. 111(17), 173601 (2013)

    Article  ADS  Google Scholar 

  19. B. Yurke, S. L. McCall, and J. R. Klauder, SU(2) and SU(1,1) interferometers, Phys. Rev. A 33(6), 4033 (1986)

    Article  ADS  Google Scholar 

  20. W. N. Plick, J. P. Dowling, and G. S. Agarwal, Coherentlight- boosted, sub-shot noise, quantum interferometry, New J. Phys. 12(8), 083014 (2010)

    Article  ADS  Google Scholar 

  21. D. Li, C. H. Yuan, Z. Y. Ou, and W. Zhang, The phase sensitivity of an SU(1,1) interferometer with coherent and squeezed-vacuum light, New J. Phys. 16(7), 073020 (2014)

    Article  ADS  Google Scholar 

  22. A. Monras, Optimal phase measurements with pure Gaussian states, Phys. Rev. A 73(3), 033821 (2006)

    Article  ADS  Google Scholar 

  23. O. Pinel, P. Jian, N. Treps, C. Fabre, and D. Braun, Quantum parameter estimation using general single-mode Gaussian states, Phys. Rev. A 88(4), 040102(R) (2013)

    Article  ADS  Google Scholar 

  24. Z. Y. Ou, Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer, Phys. Rev. A 85(2), 023815 (2012)

    Article  ADS  Google Scholar 

  25. A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, Effect of losses on the performance of an SU(1,1) interferometer, Phys. Rev. A 86(2), 023844 (2012)

    Article  ADS  Google Scholar 

  26. W. N. Plick, P. M. Anisimov, J. P. Dowling, H. Lee, and G. S. Agarwal, Parity detection in quantum optical metrology without number-resolving detectors, New J. Phys. 12(11), 113025 (2010)

    Article  ADS  Google Scholar 

  27. U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, Optimal quantum phase estimation, Phys. Rev. Lett. 102(4), 040403 (2009)

    Article  ADS  Google Scholar 

  28. T. Ono and H. F. Hofmann, Effects of photon losses on phase estimation near the Heisenberg limit using coherent light and squeezed vacuum, Phys Rev. A 81(3), 033819 (2010)

    Article  ADS  Google Scholar 

  29. Y. M. Zhang, X. W. Li, W. Yang, and G. R. Jin, Quantum Fisher information of entangled coherent states in the presence of photon loss, Phys. Rev. A 88(4), 043832 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya-Fei Yu  (於亚飞) or Zhi-Ming Zhang  (张智明).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, XY., Wei, CP., Yu, YF. et al. Enhanced phase sensitivity of an SU(1,1) interferometer with displaced squeezed vacuum light. Front. Phys. 11, 114203 (2016). https://doi.org/10.1007/s11467-015-0547-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-015-0547-0

Keywords

Navigation