Skip to main content
Log in

Lee-Yang zeros in the Rydberg atoms

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Lee-Yang (LY) zeros play a fundamental role in the formulation of statistical physics in terms of (grand) partition functions, and assume theoretical significance for the phenomenon of phase transitions. In this paper, motivated by recent progress in cold Rydberg atom experiments, we explore the LY zeros in classical Rydberg blockade models. We find that the distribution of zeros of partition functions for these models in one dimension (1d) can be obtained analytically. We prove that all the LY zeros are real and negative for such models with arbitrary blockade radii. Therefore, no phase transitions happen in 1d classical Rydberg chains. We investigate how the zeros redistribute as one interpolates between different blockade radii. We also discuss possible experimental measurements of these zeros.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. N. Yang and T. D. Lee, Statistical theory of equations of state and phase transitions (I): Theory of condensation, Phys. Rev. 87(3), 404 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. T. D. Lee and C. N. Yang, Statistical theory of equations of state and phase transitions (II): Lattice gas and Ising model, Phys. Rev. 87(3), 410 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. T. Asano, Generalization of the Lee-Yang theorem, Prog. Theor. Phys. 40(6), 1328 (1968)

    Article  ADS  Google Scholar 

  4. M. Suzuki, Theorems on the Ising model with general spin and phase transition, J. Math. Phys. 9(12), 2064 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Suzuki, Theorems on extended Ising model with applications to dilute ferromagnetism, Prog. Theor. Phys. 40(6), 1246 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  6. R. B. Griffiths, Rigorous results for Ising ferromagnets of arbitrary spin, J. Math. Phys. 10(9), 1559 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  7. T. Asano, Theorems on the partition functions of the Heisenberg ferromagnets, J. Phys. Soc. Jpn. 29(2), 350 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. D. Ruelle, Extension of the Lee-Yang circle theorem, Phys. Rev. Lett. 26(6), 303 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Suzuki and M. E. Fisher, Zeros of the partition function for the Heisenberg, ferroelectric, and general Ising models, J. Math. Phys. 12(2), 235 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  10. D. A. Kurtze and M. E. Fisher, The Yang—Lee edge singularity in spherical models, J. Stat. Phys. 19(3), 205 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  11. E. H. Lieb and D. Ruelle, A property of zeros of the partition function for Ising spin systems, J. Math. Phys. 13, 781 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  12. O. J. Heilmann and E. H. Lieb, Theory of monomerdimer systems, Commun. Math. Phys. 25, 190 (1972)

    Article  ADS  MATH  Google Scholar 

  13. R. L. Dobrushin, J. Kolafa, and S. B. Shlosman, Phase diagram of the two-dimensional Ising antiferromagnet (computer-assisted proof), Commun. Math. Phys. 102(1), 89 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  14. B. Beauzamy, On complex Lee and Yang polynomials, Commun. Math. Phys. 182(1), 177 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. S. Y. Kim, Yang-Lee zeros of the antiferromagnetic Ising model, Phys. Rev. Lett. 93(13), 130604 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  16. C. O. Hwang and S. Y. Kim, Yang-Lee zeros of triangular Ising antiferromagnets, Physica A 389(24), 5650 (2010)

    Article  ADS  Google Scholar 

  17. J. L. Lebowitz, D. Ruelle, and E. R. Speer, Location of the Lee-Yang zeros and absence of phase transitions in some Ising spin systems, J. Math. Phys. 53(9), 095211 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. J. L. Lebowitz and J. A. Scaramazza, A note on Lee-Yang zeros in the negative half-plane, J. Phys.: Condens. Matter 28(41), 414004 (2016)

    Google Scholar 

  19. M. Heyl, A. Polkovnikov, and S. Kehrein, Dynamical quantum phase transitions in the transverse-field Ising model, Phys. Rev. Lett. 110(13), 135704 (2013)

    Article  ADS  Google Scholar 

  20. K. Brandner, V. F. Maisi, J. P. Pekola, J. P. Garrahan, and C. Flindt, Experimental determination of dynamical Lee-Yang zeros, Phys. Rev. Lett. 118(18), 180601 (2017)

    Article  ADS  Google Scholar 

  21. A. Deger and C. Flindt, Determination of universal critical exponents using Lee-Yang theory, Phys. Rev. Res. 1(2), 023004 (2019)

    Article  Google Scholar 

  22. A. Deger, F. Brange, and C. Flindt, Lee-Yang theory, high cumulants, and large-deviation statistics of the magnetization in the Ising model, Phys. Rev. B 102(17), 174418 (2020)

    Article  ADS  Google Scholar 

  23. T. Kist, J. L. Lado, and C. Flindt, Lee-Yang theory of criticality in interacting quantum many-body systems, Phys. Rev. Res. 3(3), 033206 (2021)

    Article  Google Scholar 

  24. D. C. Kurtz, A sufficient condition for all the roots of a polynomial to be real, Am. Math. Mon. 99(3), 259 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Borcea and P. Brändén, The Lee-Yang and Polya-Schur programs (I): Linear operators preserving stability, Invent. Math. 177(3), 541 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. J. Borcea and P. Brändén, The Lee-Yang and Polya—Schur programs (II): Theory of stable polynomials and applications, Commun. Pure Appl. Math. 62(12), 1595 (2009)

    Article  MATH  Google Scholar 

  27. D. Ruelle, Characterization of Lee-Yang polynomials, Ann. Math. 171(1), 589 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. B. B. Wei and R. B. Liu, Lee-Yang zeros and critical times in decoherence of a probe spin coupled to a bath, Phys. Rev. Lett. 109(18), 185701 (2012)

    Article  ADS  Google Scholar 

  29. X. Peng, H. Zhou, B. B. Wei, J. Cui, J. Du, and R. B. Liu, Experimental observation of Lee-Yang zeros, Phys. Rev. Lett. 114(1), 010601 (2015)

    Article  ADS  Google Scholar 

  30. H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Probing many body dynamics on a 51-atom quantum simulator, Nature 551(7682), 579 (2017)

    Article  ADS  Google Scholar 

  31. A. Keesling, A. Omran, H. Levine, H. Bernien, H. Pichler, S. Choi, R. Samajdar, S. Schwartz, P. Silvi, S. Sachdev, P. Zoller, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Quantum Kibble-Zurek mechanism and critical dynamics on a programmable Rydberg simulator, Nature 568(7751), 207 (2019)

    Article  ADS  Google Scholar 

  32. K. J. Satzinger, Y. J. Liu, A. Smith, C. Knapp, M. Newman, et al., Realizing topologically ordered states on a quantum processor, Science 374(6572), 1237 (2021)

    Article  ADS  Google Scholar 

  33. S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho, S. Choi, S. Sachdev, M. Greiner, V. Vuletić, and M. D. Lukin, Quantum phases of matter on a 256-atom programmable quantum simulator, Nature 595(7866), 227 (2021)

    Article  ADS  Google Scholar 

  34. R. Samajdar, W. W. Ho, H. Pichler, M. D. Lukin, and S. Sachdev, Complex density wave orders and quantum phase transitions in a model of square-lattice Rydberg atom arrays, Phys. Rev. Lett. 124(10), 103601 (2020)

    Article  ADS  Google Scholar 

  35. M. Kalinowski, R. Samajdar, R. G. Melko, M. D. Lukin, S. Sachdev, and S. Choi, Bulk and boundary quantum phase transitions in a square Rydberg atom array, Phys. Rev. B 105(17), 174417 (2022)

    Article  ADS  Google Scholar 

  36. R. Verresen, M. D. Lukin, and A. Vishwanath, Prediction of toric code topological order from Rydberg blockade, Phys. Rev. X 11(3), 031005 (2021)

    Google Scholar 

  37. G. Semeghini, H. Levine, A. Keesling, S. Ebadi, T. T. Wang, D. Bluvstein, R. Verresen, H. Pichler, M. Kalinowski, R. Samajdar, A. Omran, S. Sachdev, A. Vishwanath, M. Greiner, V. Vuletić, and M. D. Lukin, Probing topological spin liquids on a programmable quantum simulator, Science 374(6572), 1242 (2021)

    Article  ADS  Google Scholar 

  38. R. Samajdar, W. W. Ho, H. Pichler, M. D. Lukin, and S. Sachdev, Quantum phases of Rydberg atoms on a kagome lattice, Proc. Natl. Acad. Sci. USA 118(4), e2015785118 (2021)

    Article  Google Scholar 

  39. Y. Cheng, C. Li, and H. Zhai, Variational approach to quantum spin liquid in a Rydberg atom simulator, arXiv: 2112.13688 (2021)

  40. G. Giudici, M. D. Lukin, and H. Pichler, Dynamical preparation of quantum spin liquids in Rydberg atom arrays, Phys. Rev. Lett. 129(9), 090401 (2022)

    Article  ADS  Google Scholar 

  41. P. Fendley, K. Sengupta, and S. Sachdev, Competing density-wave orders in a one-dimensional hard-boson model, Phys. Rev. B 69(7), 075106 (2004)

    Article  ADS  Google Scholar 

  42. R. Samajdar, S. Choi, H. Pichler, M. D. Lukin, and S. Sachdev, Numerical study of the chiral Z3 quantum phase transition in one spatial dimension, Phys. Rev. A 98(2), 023614 (2018)

    Article  ADS  Google Scholar 

  43. G. Giudici, A. Angelone, G. Magnifico, Z. Zeng, G. Giudice, T. Mendes-Santos, and M. Dalmonte, Diagnosing Potts criticality and two-stage melting in one dimensional hard-core Boson models, Phys. Rev. B 99(9), 094434 (2019)

    Article  ADS  Google Scholar 

  44. N. Chepiga and F. Mila, Floating phase versus chiral transition in a 1D hard-Boson model, Phys. Rev. Lett. 122(1), 017205 (2019)

    Article  ADS  Google Scholar 

  45. M. Rader and A. M. Läuchli, Floating phases in one-dimensional Rydberg Ising chains, arXiv: 1908.02068 (2019)

  46. I. A. Maceira, N. Chepiga, and F. Mila, Conformal and chiral phase transitions in Rydberg chains, arXiv: 2203.01163 (2022)

  47. C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić, Weak ergodicity breaking from quantum many-body scars, Nat. Phys. 14(7), 745 (2018)

    Article  Google Scholar 

  48. M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many body scars and weak breaking of ergodicity, Nat. Phys. 17(6), 675 (2021)

    Article  Google Scholar 

  49. F. C. Alcaraz and R. A. Pimenta, Free fermionic and parafermionic quantum spin chains with multispin interactions, Phys. Rev. B 102, 121101(R) (2020)

    Article  ADS  Google Scholar 

  50. F. C. Alcaraz and R. A. Pimenta, Integrable quantum spin chains with free fermionic and parafermionic spectrum, Phys. Rev. B 102(23), 235170 (2020)

    Article  ADS  Google Scholar 

  51. P. Fendley, Free fermions in disguise, J. Phys. A Math. Theor. 52(33), 335002 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Hui Zhai for helpful discussions. Both authors are supported by the International Postdoctoral Exchange Fellowship Program and the Shuimu Tsinghua Scholar Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengshu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Yang, F. Lee-Yang zeros in the Rydberg atoms. Front. Phys. 18, 22301 (2023). https://doi.org/10.1007/s11467-022-1226-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1226-6

Keywords

Navigation