Skip to main content
Log in

Spiral wave chimeras in populations of oscillators coupled to a slowly varying diffusive environment

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Chimera states are firstly discovered in nonlocally coupled oscillator systems. Such a nonlocal coupling arises typically as oscillators are coupled via an external environment whose characteristic time scale τ is so small (i.e., τ → o) that it could be eliminated adiabatically. Nevertheless, whether the chimera states still exist in the opposite situation (i.e., τ ≫ 1) is unknown. Here, by coupling large populations of Stuart—Landau oscillators to a diffusive environment, we demonstrate that spiral wave chimeras do exist in this oscillator-environment coupling system even when τ is very large. Various transitions such as from spiral wave chimeras to spiral waves or unstable spiral wave chimeras as functions of the system parameters are explored. A physical picture for explaining the formation of spiral wave chimeras is also provided. The existence of spiral wave chimeras is further confirmed in ensembles of FitzHugh—Nagumo oscillators with the similar oscillator-environment coupling mechanism. Our results provide an affirmative answer to the observation of spiral wave chimeras in populations of oscillators mediated via a slowly changing environment and give important hints to generate chimera patterns in both laboratory and realistic chemical or biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kuramoto and D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst. 5, 380 (2002)

    Google Scholar 

  2. D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett. 93(17), 174102 (2004)

    Article  ADS  Google Scholar 

  3. O. E. Omel’chenko, Y. L. Maistrenko, and P. A. Tass, Chimera states: The natural link between coherence and incoherence, Phys. Rev. Lett. 100(4), 044105 (2008)

    Article  ADS  Google Scholar 

  4. G. C. Sethia, A. Sen, and F. M. Atay, Clustered chimera states in delay-coupled oscillator systems, Phys. Rev. Lett. 100(14), 144102 (2008)

    Article  ADS  Google Scholar 

  5. D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett. 101(8), 084103 (2008)

    Article  ADS  Google Scholar 

  6. I. Omelchenko, Y. Maistrenko, P. Hövel, and E. Schöll, Loss of coherence in dynamical networks: Spatial chaos and chimera states, Phys. Rev. Lett. 106(23), 234102 (2011)

    Article  ADS  Google Scholar 

  7. I. Omelchenko, O. E. Omel’chenko, P. Hövel, and E. Schöll, When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states, Phys. Rev. Lett. 110(22), 224101 (2013)

    Article  ADS  Google Scholar 

  8. A. Zakharova, M. Kapeller, and E. Schöll, Chimera death: Symmetry breaking in dynamical networks, Phys. Rev. Lett. 112(15), 154101 (2014)

    Article  ADS  Google Scholar 

  9. G. C. Sethia, A. Sen, and G. L. Johnston, Amplitude-mediated chimera states, Phys. Rev. E 88(4), 042917 (2013)

    Article  ADS  Google Scholar 

  10. R. Mukherjee and A. Sen, Amplitude mediated chimera states with active and inactive oscillators, Chaos 28(5), 053109 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  11. Y. Zhu, Z. G. Zheng, and J. Yang, Chimera states on complex networks, Phys. Rev. E 89(2), 022914 (2014)

    Article  ADS  Google Scholar 

  12. H. Y. Xu, G. L. Wang, L. Huang, and Y. C. Lai, Chaos in Dirac electron optics: Emergence of a relativistic quantum chimera, Phys. Rev. Lett. 120(12), 124101 (2018)

    Article  ADS  Google Scholar 

  13. Y. Zhang, Z. G. Nicolaou, J. D. Hart, R. Roy, and A. E. Motter, Critical switching in globally attractive chimeras, Phys. Rev. X 10(1), 011044 (2020)

    Google Scholar 

  14. Z. G. Zheng and Y. Zhai, Chimera state: From complex networks to spatiotemporal patterns, Sci. Chin. -Phys. Mech. Astron. 50(1), 010505 (2020)

    Article  Google Scholar 

  15. Y. Zhang and A. E. Motter, Mechanism for strong chimeras, Phys. Rev. Lett. 126(9), 094101 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  16. Q. L. Dai, X. X. Liu, K. Yang, H. Y. Cheng, H. H. Li, F. Xie, and J. Z. Yang, Entangled chimeras in nonlocally coupled bicomponent phase oscillators: From synchronous to asynchronous chimeras, Front. Phys. 15(6), 62501 (2020)

    Article  ADS  Google Scholar 

  17. W. H. Wang, Q. L. Dai, H. Y. Cheng, H. H. Li, and J. Z. Yang, Chimera dynamics in nonlocally coupled moving phase oscillators, Front. Phys. 14(4), 43605 (2019)

    Article  ADS  Google Scholar 

  18. A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, and E. Schöll, Experimental observation of chimeras in coupled-map lattices, Nat. Phys. 8(9), 658 (2012)

    Article  Google Scholar 

  19. M. R. Tinsley, S. Nkomo, and K. Showalter, Chimera and phase-cluster states in populations of coupled chemical oscillators, Nat. Phys. 8(9), 662 (2012)

    Article  Google Scholar 

  20. S. Nkomo, M. R. Tinsley, and K. Showalter, Chimera states in populations of nonlocally coupled chemical oscillators, Phys. Rev. Lett. 110(24), 244102 (2013)

    Article  ADS  Google Scholar 

  21. S. Nkomo, M. R. Tinsley, and K. Showalter, Chimera and chimera-like states in populations of nonlocally coupled homogeneous and heterogeneous chemical oscillators, Chaos 26(9), 094826 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. E. A. Martens, S. Thutupalli, A. Fourriere, and O. Hallatschek, Chimera states in mechanical oscillator networks, Proc. Natl. Acad. Sci. USA 110(26), 10563 (2013)

    Article  ADS  Google Scholar 

  23. M. Wickramasinghe and I. Z. Kiss, Spatially organized partial synchronization through the chimera mechanism in a network of electrochemical reactions, Phys. Chem. Chem. Phys. 16(34), 18360 (2014)

    Article  Google Scholar 

  24. L. Schmidt, K. Schönleber, K. Krischer, and V. García-Morales, Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling, Chaos 24(1), 013102 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  25. J. C. Wiehl, M. Patzauer, and K. Krischer, Birhythmicity, intrinsic entrainment, and minimal chimeras in an electrochemical experiment, Chaos 31(9), 091102 (2021)

    Article  ADS  Google Scholar 

  26. L. V. Gambuzza, A. Buscarino, S. Chessari, L. Fortuna, R. Meucci, and M. Frasca, Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators, Phys. Rev. E 90(3), 032905 (2014)

    Article  ADS  Google Scholar 

  27. L. Larger, B. Penkovsky, and Y. Maistrenko, Laser chimeras as a paradigm for multistable patterns in complex systems, Nat. Commun. 6(1), 7752 (2015)

    Article  ADS  Google Scholar 

  28. M. J. Panaggio and D. M. Abrams, Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity 28(3), R67 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. O. E. Omel’chenko, The mathematics behind chimera states, Nonlinearity 31(5), R121 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. F. Parastesh, S. Jafari, H. Azarnoush, Z. Shahriari, Z. Wang, S. Boccaletti, and M. Perc, Chimeras, Phys. Rep. 898, 1 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. N. Semenova, A. Zakharova, V. Anishchenko, and E. Schöll, Coherence-resonance chimeras in a network of excitable elements, Phys. Rev. Lett. 117(1), 014102 (2016)

    Article  ADS  Google Scholar 

  32. Q. Dai, M. Zhang, H. Cheng, H. Li, F. Xie, and J. Yang, From collective oscillation to chimera state in a nonlocally coupled excitable system, Nonlinear Dyn. 91(3), 1723 (2018)

    Article  Google Scholar 

  33. B. K. Bera, S. Majhi, D. Ghosh, and M. Perc, Chimera states: Effects of different coupling topologies, Europhys. Lett. 118(1), 10001 (2017)

    Article  ADS  Google Scholar 

  34. G. C. Sethia and A. Sen, Chimera states: The existence criteria revisited, Phys. Rev. Lett. 112(14), 144101 (2014)

    Article  ADS  Google Scholar 

  35. A. Yeldesbay, A. Pikovsky, and M. Rosenblum, Chimeralike states in an ensemble of globally coupled oscillators, Phys. Rev. Lett. 112(14), 144103 (2014)

    Article  ADS  Google Scholar 

  36. C. R. Laing, Chimeras in networks with purely local coupling, Phys. Rev. E 92(5), 050904(R) (2015)

    Article  ADS  Google Scholar 

  37. M. G. Clerc, S. Coulibaly, M. A. Ferré, M. A. Garcìa-Nustes, and R. G. Rojas, Chimera-type states induced by local coupling, Phys. Rev. E 93(5), 052204 (2016)

    Article  ADS  Google Scholar 

  38. B. K. Bera, D. Ghosh, and T. Banerjee, Imperfect traveling chimera states induced by local synaptic gradient coupling, Phys. Rev. E 94(1), 012215 (2016)

    Article  ADS  Google Scholar 

  39. B. K. Bera and D. Ghosh, Chimera states in purely local delay-coupled oscillators, Phys. Rev. E 93(5), 052223 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  40. K. Premalatha, V. K. Chandrasekar, M. Senthilvelan, and M. Lakshmanan, Stable amplitude chimera states in a network of locally coupled Stuart—Landau oscillators, Chaos 28(3), 033110 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. M. G. Clerc, S. Coulibaly, M. A. Ferré, and R. G. Rojas, Chimera states in a Duffing oscillators chain coupled to nearest neighbors, Chaos 28(8), 083126 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. S. Kundu, S. Majhi, B. K. Bera, D. Ghosh, and M. Lakshmanan, Chimera states in two-dimensional networks of locally coupled oscillators, Phys. Rev. E 97(2), 022201 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  43. S. Kundu, B. K. Bera, D. Ghosh, and M. Lakshmanan, Chimera patterns in three-dimensional locally coupled systems, Phys. Rev. E 99(2), 022204 (2019)

    Article  ADS  Google Scholar 

  44. S. W. Haugland, L. Schmidt, and K. Krischer, Self-organized alternating chimera states in oscillatory media, Sci. Rep. 5(1), 9883 (2015)

    Article  ADS  Google Scholar 

  45. J. Xie, E. Knobloch, and H. C. Kao, Multicluster and traveling chimera states in nonlocal phasecoupled oscillators, Phys. Rev. E 90(2), 022919 (2014)

    Article  ADS  Google Scholar 

  46. Y. Kuramoto and S. Shima, Rotating spirals without phase singularity in reaction-diffusion systems, Prog. Theor. Phys. Suppl. 150, 115 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  47. S. Shima and Y. Kuramoto, Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators, Phys. Rev. E 69(3), 036213 (2004)

    Article  ADS  Google Scholar 

  48. E. A. Martens, C. R. Laing, and S. H. Strogatz, Solvable model of spiral wave chimeras, Phys. Rev. Lett. 104(4), 044101 (2010)

    Article  ADS  Google Scholar 

  49. N. C. Rattenborg, C. J. Amlaner, and S. L. Lima, Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep, Neurosci. Biobehav. Rev. 24(8), 817 (2000)

    Article  Google Scholar 

  50. M. Tamaki, J. W. Bang, T. Watanabe, and Y. Sasaki, Night watch in one brain hemisphere during sleep associated with the first-night effect in humans, Curr. Biol. 26(9), 1190 (2016)

    Article  Google Scholar 

  51. C. Lainscsek, N. Rungratsameetaweemana, S. S. Cash, and T. J. Sejnowski, Cortical chimera states predict epileptic seizures, Chaos 29(12), 121106 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  52. S. Majhi, B. K. Bera, D. Ghosh, and M. Perc, Chimera states in neuronal networks: A review, Phys. Life Rev. 28, 100 (2019)

    Article  ADS  Google Scholar 

  53. S. Majhi, M. Perc, and D. Ghosh, Chimera states in a multilayer network of coupled and uncoupled neurons, Chaos 27(7), 073109 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  54. S. Huo, C. Tian, M. Zheng, S. Guan, C. S. Zhou, and Z. Liu, Spatial multi-scaled chimera states of cerebral cortex network and its inherent structure-dynamics relationship in human brain, Nat. Sci. Rev. 8(1), nwaa125 (2021)

    Article  Google Scholar 

  55. T. Wu, X. Zhang, and Z. Liu, Understanding the mechanisms of brain functions from the angle of synchronization and complex network, Front. Phys. 17(3), 31504 (2022)

    Article  ADS  Google Scholar 

  56. C. R. Laing, The dynamics of chimera states in heterogeneous Kuramoto networks, Physica D 238(16), 1569 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. C. Gu, G. St-Yves, and J. Davidsen, Spiral wave chimeras in complex oscillatory and chaotic systems, Phys. Rev. Lett. 111(13), 134101 (2013)

    Article  ADS  Google Scholar 

  58. X. Tang, T. Yang, I. R. Epstein, Y. Liu, Y. Zhao, and Q. Gao, Novel type of chimera spiral waves arising from decoupling of a diffusible component, J. Chem. Phys. 141(2), 024110 (2014)

    Article  ADS  Google Scholar 

  59. J. Xie, E. Knobloch, and H. C. Kao, Twisted chimera states and multicore spiral chimera states on a two-dimensional torus, Phys. Rev. E 92(4), 042921 (2015)

    Article  ADS  Google Scholar 

  60. B. W. Li and H. Dierckx, Spiral wave chimeras in locally coupled oscillator systems, Phys. Rev. E 93, 020202(R) (2016)

    Article  ADS  Google Scholar 

  61. S. Kundu, S. Majhi, P. Muruganandam, and D. Ghosh, Diffusion induced spiral wave chimeras in ecological system, Eur. Phys. J. Spec. Top. 227(7–9), 983 (2018)

    Article  Google Scholar 

  62. S. Guo, Q. Dai, H. Cheng, H. Li, F. Xie, and J. Yang, Spiral wave chimera in two-dimensional nonlocally coupled FitzHugh-Nagumo systems, Chaos Solitons Fractals 114, 394 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. E. Rybalova, A. Bukh, G. Strelkova, and V. Anishchenko, Spiral and target wave chimeras in a 2D lattice of map-based neuron models, Chaos 29(10), 101104 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. B. W. Li, Y. He, L. D. Li, L. Yang, and X. Wang, Spiral wave chimeras in reaction-diffusion systems: Phenomenon, mechanism and transitions, Commun. Nonlinear Sci. Numer. Simul. 99, 105830 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  65. J. F. Totz, M. R. Tinsley, H. Engel, and K. Showalter, Transition from spiral wave chimeras to phase cluster states, Sci. Rep. 10(1), 7821 (2020)

    Article  ADS  Google Scholar 

  66. J. F. Totz, J. Rode, M. R. Tinsley, K. Showalter, and H. Engel, Spiral wave chimera states in large populations of coupled chemical oscillators, Nat. Phys. 14(3), 282 (2018)

    Article  Google Scholar 

  67. M. Bataille-Gonzalez, M. G. Clerc, and O. E. Omel’chenko, Moving spiral wave chimeras, Phys. Rev. E 104(2), L022203 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  68. B. K. Bera, S. Kundu, P. Muruganandam, D. Ghosh, and M. Lakshmanan, Spiral wave chimeralike transient dynamics in three-dimensional grid of diffusive ecological systems, Chaos 31(8), 083125 (2021)

    Article  ADS  Google Scholar 

  69. Y. Maistrenko, O. Sudakov, O. Osiv, and V. Maistrenko, Chimera states in three dimensions, New J. Phys. 17(7), 073037 (2015)

    Article  ADS  MATH  Google Scholar 

  70. C. H. Tian, X. Y. Zhang, Z. H. Wang, and Z. H. Liu, Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling, Front. Phys. 12(3), 128904 (2017)

    Article  ADS  Google Scholar 

  71. A. Camilli and B. L. Bassler, Bacterial small-molecule signaling pathways, Science 311(5764), 1113 (2006)

    Article  ADS  Google Scholar 

  72. J. Garcia-Ojalvo, M. B. Elowitz, and S. H. Strogatz, Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing, Proc. Natl. Acad. Sci. USA 101(30), 10955 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. S. De Monte, F. d’Ovidio, S. Danø, and P. G. Sørensen, Dynamical quorum sensing: Population density encoded in cellular dynamics, Proc. Natl. Acad. Sci. USA 104(47), 18377 (2007)

    Article  ADS  Google Scholar 

  74. R. Toth, A. F. Taylor, and M. R. Tinsley, Collective behavior of a population of chemically coupled oscillators, J. Phys. Chem. B 110(20), 10170 (2006)

    Article  Google Scholar 

  75. A. F. Taylor, M. R. Tinsley, F. Wang, Z. Huang, and K. Showalter, Dynamical quorum sensing and synchronization in large populations of chemical oscillators, Science 323(5914), 614 (2009)

    Article  ADS  Google Scholar 

  76. T. Gregor, K. Fujimoto, N. Masaki, and S. Sawai, The onset of collective behavior in social Amoebae, Science 328(5981), 1021 (2010)

    Article  ADS  Google Scholar 

  77. J. Noorbakhsh, D. J. Schwab, A. E. Sgro, T. Gregor, and P. Mehta, Modeling oscillations and spiral waves in Dictyostelium populations, Phys. Rev. E 91(6), 062711 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  78. T. Danino, O. Mondragón-Palomino, L. Tsimring, and J. Hasty, A synchronized quorum of genetic clocks, Nature 463(7279), 326 (2010)

    Article  ADS  Google Scholar 

  79. J. Schütze, T. Mair, M. J. B. Hauser, M. Falcke, and J. Wolf, Metabolic synchronization by traveling waves in yeast cell layers, Biophys. J. 100(4), 809 (2011)

    Article  ADS  Google Scholar 

  80. J. J. Rubin, J. E. Rubin, and G. B. Ermentrout, Analysis of synchronization in a slowly changing environment: How slow coupling becomes fast weak coupling, Phys. Rev. Lett. 110(20), 204101 (2013)

    Article  ADS  Google Scholar 

  81. J. Gou and M. J. Ward, An asymptotic analysis of a 2-D model of dynamically active compartments coupled by bulk diffusion, J. Nonlinear Sci. 26(4), 979 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. S. A. Iyaniwura and M. J. Ward, Synchrony and oscillatory dynamics for a 2-D PDE-ODE model of diffusion-mediated communication between small signaling compartments, SIAM J. Appl. Dyn. Syst. 20(1), 438 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  83. V. K. Chandrasekar, R. Gopal, D. V. Senthilkumar, and M. Lakshmanan, Phase-flip chimera induced by environmental nonlocal coupling, Phys. Rev. E 44(1), 012208 (2016)

    Article  ADS  Google Scholar 

  84. C. U. Choe, M. H. Choe, H. Jang, and R. S. Kim, Symmetry breakings in two populations of oscillators coupled via diffusive environments: Chimera and heterosynchrony, Phys. Rev. E 101(4), 042213 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  85. S. Alonso, K. John, and M. Bär, Complex wave patterns in an effective reaction—diffusion model for chemical reactions in microemulsions, J. Chem. Phys. 134(9), 094117 (2011)

    Article  ADS  Google Scholar 

  86. E. M. Nicola, M. Or-Guil, W. Wolf, and M. Bär, Drifting pattern domains in a reaction-diffusion system with nonlocal coupling, Phys. Rev. E 65(5), 055101(R) (2002)

    Article  ADS  Google Scholar 

  87. A. A. Cherkashin, V. K. Vanag, and I. R. Epstein, Discontinuously propagating waves in the bathoferroin-catalyzed Belousov—Zhabotinsky reaction incorporated into a microemulsion, J. Chem. Phys. 128(20), 204508 (2008)

    Article  ADS  Google Scholar 

  88. C. P. Schenk, M. Or-Guil, M. Bode, and H. G. Purwins, Interacting pulses in three-component reaction-diffusion systems on two-dimensional domains, Phys. Rev. Lett. 78(19), 3781 (1997)

    Article  ADS  Google Scholar 

  89. B. W. Li, X. Z. Cao, and C. Fu, Quorum sensing in populations of spatially extended chaotic oscillators coupled indirectly via a heterogeneous environment, J. Nonlinear Sci. 27(6), 1667 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. X. Z. Cao, Y. He, and B. W. Li, Selection of spatiotemporal patterns in arrays of spatially distributed oscillators indirectly coupled via a diffusive environment, Chaos 29(4), 043104 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. J. T. Pan, M. C. Cai, B. W. Li, and H. Zhang, Chiralities of spiral waves and their transitions, Phys. Rev. E 87(6), 062907 (2013)

    Article  ADS  Google Scholar 

  92. J. F. Totz, Synchronization and Waves in Active Media, Springer, 2019

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11875120 and the Natural Science Foundation of Zhejiang Province under Grant No. LY16A050003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Wei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., He, Y. & Li, BW. Spiral wave chimeras in populations of oscillators coupled to a slowly varying diffusive environment. Front. Phys. 18, 13309 (2023). https://doi.org/10.1007/s11467-022-1223-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1223-9

Keywords

Navigation