Skip to main content
Log in

Quantum entanglement in the Sachdev—Ye—Kitaev model and its generalizations

  • Topical Review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Entanglement is one of the most important concepts in quantum physics. We review recent progress in understanding the quantum entanglement in many-body systems using large-N solvable models: the Sachdev—Ye—Kitaev (SYK) model and its generalizations. We present the study of entanglement entropy in the original SYK model using three different approaches: the exact diagonalization, the eigenstate thermalization hypothesis, and the path-integral representation. For coupled SYK models, the entanglement entropy shows linear growth and saturation at the thermal value. The saturation is related to replica wormholes in gravity. Finally, we consider the steady-state entanglement entropy of quantum many-body systems under repeated measurements. The traditional symmetry breaking in the enlarged replica space leads to the measurement-induced entanglement phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Notes

  1. R. Jozsa Entanglement and quantum computation, arXiv: Quant-ph/9707034 (1997)

  2. R. Jozsa and N. Linden, On the role of entanglement in quantum-computational speed-up, Proc. Royal Soc. Lond. A 459(2036), 2011 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. S. Ding and Z. Jin, Review on the study of entanglement in quantum computation speedup, Chin. Sci. Bull. 52(16), 2161 (2007)

    Article  Google Scholar 

  4. A. Pal and D. A. Huse, Many-body localization phase transition, Phys. Rev. B 82(17), 174411 (2010)

    Article  ADS  Google Scholar 

  5. R. Nandkishore and D. A. Huse, Many-body localization and thermalization in quantum statistical mechanics, Annu. Rev. Condens. Matter Phys. 6(1), 15 (2015)

    Article  ADS  Google Scholar 

  6. D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Many-body localization, thermalization, and entanglement, Rev. Mod. Phys. 91(2), 021001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  7. J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43(4), 2046 (1991)

    Article  ADS  Google Scholar 

  8. M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50(2), 888 (1994)

    Article  ADS  Google Scholar 

  9. A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96(11), 110404 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Levin and X. G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96(11), 110405 (2006)

    Article  ADS  Google Scholar 

  11. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from the anti — de Sitter space/conformal field theory correspondence, Phys. Rev. Lett. 96(18), 181602 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, J. High Energy Phys. 08, 045 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, J. High Energy Phys. 2013, 90 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. V. E. Hubeny, M. Rangamani, and T. Takayanagi, A covariant holographic entanglement entropy proposal, J. High Energy Phys. 07, 062 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  15. T. Faulkner, A. Lewkowycz, and J. Maldacena, Quantum corrections to holographic entanglement entropy, J. High Energy Phys. 2013, 74 (2013)

    Article  MATH  Google Scholar 

  16. N. Engelhardt and A. C. Wall, Quantum extremal surfaces: Holographic entanglement entropy beyond the classical regime, J. High Energy Phys. 2015, 73 (2015)

    Article  Google Scholar 

  17. G. Penington, Entanglement wedge reconstruction and the information paradox, J. High Energy Phys. 2020(9), 1 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Almheiri, N. Engelhardt, D. Marolf, and H. Maxfield, The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, J. High Energy Phys. 2019(12), 1 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Almheiri, R. Mahajan, J. Maldacena, and Y. Zhao, The Page curve of Hawking radiation from semiclassical geometry, arXiv: 1908.10996 (2019)

  20. A. Almheiri, R. Mahajan, and J. Maldacena, Islands outside the horizon, arXiv: 1910.11077 (2019)

  21. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and A. Tajdini, Replica wormholes and the entropy of Hawking radiation, arXiv: 1911.12333 (2019)

  22. G. Penington, S. H. Shenker, D. Stanford, and Z. Yang, Replica wormholes and the black hole interior, arXiv: 1911.11977 (2019)

  23. P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42, 504005 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Rangamani and T. Takayanagi, in Holographic Entanglement Entropy, Springer, 2017, pp 35–47

  25. M. A. Metlitski, C. A. Fuertes, and S. Sachdev, Entanglement entropy in the O(N) model, Phys. Rev. B 80(11), 115122 (2009)

    Article  ADS  Google Scholar 

  26. S. Whitsitt, W. Witczak-Krempa, and S. Sachdev, Entanglement entropy of large-N Wilson—Fisher conformal field theory, Phys. Rev. B 95(4), 045148 (2017)

    Article  ADS  Google Scholar 

  27. W. Donnelly, S. Timmerman, and N. Valdes-Meller, Entanglement entropy and the large N expansion of two-dimensional Yang—Mills theory, arXiv: 1911.09302 (2019)

  28. A. Kitaev, in: Talk given at the Fundamental Physics Prize Symposium, Vol. 10 (2014)

  29. S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70(21), 3339 (1993)

    Article  ADS  Google Scholar 

  30. J. Maldacena and D. Stanford, Remarks on the Sachdev—Ye—Kitaev model, Phys. Rev. D 94(10), 106002 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Maldacena, D. Stanford, and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly Anti-de Sitter space, Prog. Theor. Exp. Phys. 2016(12), 12C104 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Kitaev, and S. J. Suh, The soft mode in the Sachdev—Ye—Kitaev model and its gravity dual, J. High Energy Phys. 2018(5), 1 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Maldacena, S. H. Shenker, and D. Stanford, A bound on chaos, J. High Energy Phys. 2016(8), 1 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Eberlein, V. Kasper, S. Sachdev, and J. Steinberg, Quantum quench of the Sachdev—Ye—Kitaev model, Phys. Rev. B 96(20), 205123 (2017)

    Article  Google Scholar 

  35. J. C. Louw and S. Kehrein, Thermalization of many many-body interacting SYK models, Phys. Rev. B 105, 075117 (2022)

    Article  ADS  Google Scholar 

  36. P. Zhang and Y. Chen, Violation and revival of Kramers’ degeneracy in open quantum systems, arXiv: 2108.05493 (2021)

  37. D. Chowdhury, A. Georges, O. Parcollet, and S. Sachdev, Sachdev—Ye—Kitaev models and beyond: A window into non-Fermi liquids, arXiv: 2109.05037 (2021).

  38. R. A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen, and S. Sachdev, Thermoelectric transport in disordered metals without quasiparticles: The Sachdev—Ye—Kitaev models and holography, Phys. Rev. B 95(15), 155131 (2017)

    Article  ADS  Google Scholar 

  39. Y. Gu, A. Kitaev, S. Sachdev, and G. Tarnopolsky, Notes on the complex Sachdev—Ye—Kitaev model, J. High Energy Phys. 02, 157 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. P. Chaturvedi, Y. Gu, W. Song, and B. Yu, A note on the complex SYK model and warped CFTs, J. High Energy Phys. 2018, 101 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. K. Bulycheva, A note on the SYK model with complex fermions, J. High Energy Phys. 2017(12), 1 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. P. Saad, S. H. Shenker, and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv: 1806.06840 (2018)

  43. C. Sunderhauf, L. Piroli, X. L. Qi, N. Schuch, and J. I. Cirac, Quantum chaos in the Brownian SYK model with large finite N: OTOCs and tripartite information, J. High Energy Phys. 2019(11), 1 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Y. Gu, X. L. Qi, and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev—Ye—Kitaev models, J. High Energy Phys. 2017, 125 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Y. Gu, A. Lucas, and X.-L. Qi, Energy diffusion and the butterfly effect in inhomogeneous Sachdev—Ye—Kitaev chains, SciPost Phys. 2, 018 (2017)

    Article  ADS  Google Scholar 

  46. S. Banerjee and E. Altman, Solvable model for a dynamical quantum phase transition from fast to slow scrambling, Phys. Rev. B 95(13), 134302 (2017)

    Article  ADS  Google Scholar 

  47. X. Chen, R. Fan, Y. Chen, H. Zhai, and P. Zhang, Competition between chaotic and nonchaotic phases in a quadratically coupled Sachdev—Ye—Kitaev model, Phys. Rev. Lett. 119(20), 207603 (2017)

    Article  ADS  Google Scholar 

  48. X. Y. Song, C. M. Jian, and L. Balents, Strongly correlated metal built from Sachdev—Ye—Kitaev models, Phys. Rev. Lett. 119(21), 216601 (2017)

    Article  ADS  Google Scholar 

  49. S. K. Jian and H. Yao, Solvable Sachdev—Ye—Kitaev models in higher dimensions: From diffusion to many-body localization, Phys. Rev. Lett. 119(20), 206602 (2017)

    Article  ADS  Google Scholar 

  50. Y. Chen, H. Zhai, and P. Zhang, Tunable quantum chaos in the Sachdev—Ye—Kitaev model coupled to a thermal bath, J. High Energy Phys. 2017, 150 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. P. Zhang, Dispersive Sachdev—Ye—Kitaev model: Band structure and quantum chaos, Phys. Rev. B 96(20), 205138 (2017)

    Article  ADS  Google Scholar 

  52. Z. Bi, C. M. Jian, Y. Z. You, K. A. Pawlak, and C. Xu, Instability of the non-Fermi-liquid state of the Sachdev—Ye—Kitaev model, Phys. Rev. B 95(20), 205105 (2017)

    Article  ADS  Google Scholar 

  53. P. Narayan and J. Yoon, SYK-like tensor models on the lattice, J. High Energy Phys. 2017, 83 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  54. C. Liu, X. Chen, and L. Balents, Quantum entanglement of the Sachdev—Ye—Kitaev models, Phys. Rev. B 97(24), 245126 (2018)

    Article  ADS  Google Scholar 

  55. W. Fu and S. Sachdev, Numerical study of fermion and boson models with infinite-range random interactions, Phys. Rev. B 94(3), 035135 (2016)

    Article  ADS  Google Scholar 

  56. Y. Huang and Y. Gu, Eigenstate entanglement in the Sachdev—Ye—Kitaev model, Phys. Rev. D 100(4), 041901 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  57. P. Zhang, C. Liu, and X. Chen, Subsystem Rényi entropy of thermal ensembles for SYK-like models, SciPost Phys. 8, 094 (2020)

    Article  ADS  Google Scholar 

  58. P. Zhang, Entanglement entropy and its quench dynamics for pure states of the Sachdev—Ye—Kitaev model, J. High Energy Phys. 06, 143 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. A. Haldar, S. Bera, and S. Banerjee, Rényi entanglement entropy of Fermi and non-Fermi liquids: Sachdev—Ye—Kitaev model and dynamical mean field theories, Phys. Rev. Res. 2(3), 033505 (2020)

    Article  Google Scholar 

  60. J. Kudler-Flam, R. Sohal, and L. Nie, Information scrambling with conservation laws, arXiv: 2107.04043 (2021)

  61. Y. Gu, A. Lucas, and X. L. Qi, Spread of entanglement in a Sachdev—Ye—Kitaev chain, J. High Energy Phys. 2017, 120 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  62. R. Sohal, L. Nie, X. Q. Sun, and E. Fradkin, Thermalization of randomly coupled SYK models, J. Stat. Mech. 2022(1), 013103 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  63. Y. Chen, X. L. Qi, and P. Zhang, Replica wormhole and information retrieval in the SYK model coupled to Majorana chains, J. High Energy Phys. 2020, 121 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  64. Y. Chen, Entropy linear response theory with non-Markovian bath, J. High Energy Phys. 2021, 215 (2021)

    ADS  MathSciNet  Google Scholar 

  65. P. Dadras and A. Kitaev, Perturbative calculations of entanglement entropy, J. High Energy Phys. 2021(3), 1 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  66. S. K. Jian, B. Swingle, and Z. Y. Xian, Complexity growth of operators in the SYK model and in JT gravity, J. High Energy Phys. 2021, 14 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  67. S. K. Jian and B. Swingle, Chaos-protected locality, arXiv: 2109.03825 (2021)

  68. K. X. Su, P. Zhang, and H. Zhai, Page curve from non-Markovianity, J. High Energy Phys. 2021, 156 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  69. D. L. Nedel, Time dependent entanglement entropy in SYK models and page curve, Phys. Lett. B 817, 136340 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  70. Y. M. Chen and P. F. Zhang Entanglement entropy of two coupled SYK models and eternal traversable wormhole, J. High Energy Phys. 2019, 33 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  71. P. Dadras, Disentangling the thermofield-double state, J. High Energy Phys. 2022, 75 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  72. S. W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14(10), 2460 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  73. M. A. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2002

  74. Y. Li, X. Chen, and M. P. Fisher, Quantum Zeno effect and the many-body entanglement transition, Phys. Rev. B 98(20), 205136 (2018)

    Article  ADS  Google Scholar 

  75. X. Cao, A. Tilloy, and A. D. Luca, Entanglement in a fermion chain under continuous monitoring, SciPost Phys. 7(2), 24 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  76. Y. Li, X. Chen, and M. P. Fisher, Measurement-driven entanglement transition in hybrid quantum circuits, Phys. Rev. B 100(13), 134306 (2019)

    Article  ADS  Google Scholar 

  77. B. Skinner, J. Ruhman, and A. Nahum, Measurement-induced phase transitions in the dynamics of entanglement, Phys. Rev. X 9(3), 031009 (2019)

    Google Scholar 

  78. A. Chan, R. M. Nandkishore, M. Pretko, and G. Smith, Unitary-projective entanglement dynamics, Phys. Rev. B 99(22), 224307 (2019)

    Article  ADS  Google Scholar 

  79. Y. Bao, S. Choi, and E. Altman, Theory of the phase transition in random unitary circuits with measurements, Phys. Rev. B 101(10), 104301 (2020)

    Article  ADS  Google Scholar 

  80. S. Choi, Y. Bao, X. L. Qi, and E. Altman, Quantum error correction in scrambling dynamics and measurement-induced phase transition, Phys. Rev. Lett. 125(3), 030505 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  81. M. J. Gullans and D. A. Huse, Dynamical purification phase transition induced by quantum measurements, Phys. Rev. X 10(4), 041020 (2020)

    Google Scholar 

  82. M. J. Gullans and D. A. Huse, Scalable probes of measurement-induced criticality, Phys. Rev. Lett. 125(7), 070606 (2020)

    Article  ADS  Google Scholar 

  83. C. M. Jian, Y. Z. You, R. Vasseur, and A. W. Ludwig, Measurement-induced criticality in random quantum circuits, Phys. Rev. B 101(10), 104302 (2020)

    Article  ADS  Google Scholar 

  84. M. Szyniszewski, A. Romito, and H. Schomerus, Entanglement transition from variable-strength weak measurements, Phys. Rev. B 100(6), 064204 (2019)

    Article  ADS  Google Scholar 

  85. A. Zabalo, M. J. Gullans, J. H. Wilson, S. Gopalakrishnan, D. A. Huse, and J. Pixley, Critical properties of the measurement-induced transition in random quantum circuits, Phys. Rev. B 101(6), 060301 (2020)

    Article  ADS  Google Scholar 

  86. Q. Tang and W. Zhu, Measurement-induced phase transition: A case study in the nonintegrable model by density-matrix renormalization group calculations, Phys. Rev. Res. 2(1), 013022 (2020)

    Article  Google Scholar 

  87. L. Zhang, J. A. Reyes, S. Kourtis, C. Chamon, E. R. Mucciolo, and A. E. Ruckenstein, Nonuniversal entanglement level statistics in projection-driven quantum circuits, Phys. Rev. B 101(23), 235104 (2020)

    Article  ADS  Google Scholar 

  88. S. Goto and I. Danshita, Measurement-induced transitions of the entanglement scaling law in ultracold gases with controllable dissipation, Phys. Rev. A 102(3), 033316 (2020)

    Article  ADS  Google Scholar 

  89. C. M. Jian, B. Bauer, A. Keselman, and A. W. Ludwig, Criticality and entanglement in non-unitary quantum circuits and tensor networks of non-interacting fermions, arXiv: 2012.04666 (2020)

  90. Y. Bao, S. Choi, and E. Altman, Symmetry enriched phases of quantum circuits, Ann. Phys. 2021, 168618 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  91. O. Alberton, M. Buchhold, and S. Diehl, Entanglement transition in a monitored free fermion chain — from extended criticality to area law, Phys. Rev. Lett. 126, 170602 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  92. X. Chen, Y. Li, M. P. A. Fisher, and A. Lucas, Emergent conformal symmetry in nonunitary random dynamics of free fermions, Phys. Rev. Research 2, 033017 (2020)

    Article  ADS  Google Scholar 

  93. A. Nahum and B. Skinner, Entanglement and dynamics of diffusion-annihilation processes with Majorana defects, Phys. Rev. Research 2, 023288 (2020)

    Article  ADS  Google Scholar 

  94. C. Liu, P. Zhang, and X. Chen, Non-unitary dynamics of Sachdev—Ye—Kitaev chain, SciPost Phys. 10, 048 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  95. P. Zhang, S. K. Jian, C. Liu, and X. Chen, Emergent replica conformal symmetry in non-Hermitian SYK2 chains, Quantum 5, 579 (2021)

    Article  Google Scholar 

  96. S. K. Jian, C. Liu, X. Chen, B. Swingle, and P. Zhang, Measurement-induced phase transition in the monitored Sachdev—Ye—Kitaev model, Phys. Rev. Lett. 127(14), 140601 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  97. P. Zhang, C. Liu, S. K. Jian, and X. Chen, Universal entanglement transitions of free fermions with long-range non-unitary dynamics, arXiv: 2105.08895 (2021)

  98. S. Sahu, S. K. Jian, G. Bentsen, and B. Swingle, Entanglement phases in large-N hybrid Brownian circuits with long-range couplings, arXiv: 2109.00013 (2021)

  99. S. K. Jian, C. Liu, X. Chen, B. Swingle, and P. Zhang, Quantum error as an emergent magnetic field, arXiv: 2106.09635 (2021)

  100. S. K. Jian and B. Swingle, Phase transition in von Neumann entanglement entropy from replica symmetry breaking, arXiv: 2108.11973 (2021)

  101. S. Coleman, Aspects of Symmetry: Selected Erice Lectures, Cambridge University Press, 1988

  102. A. Altland and B. D. Simons, Condensed Matter Field Theory, Cambridge University Press, 2010

  103. C. M. Grinstead and J. L. Snell, Introduction to Probability, American Mathematical Society, 1997

  104. A. Georges, O. Parcollet, and S. Sachdev, Quantum fluctuations of a nearly critical Heisenberg spin glass, Phys. Rev. B 63(13), 134406 (2001)

    Article  ADS  Google Scholar 

  105. A. M. García-García, and J. J. Verbaarschot, Analytical spectral density of the Sachdev—Ye—Kitaev model at finite N, Phys. Rev. D 96(6), 066012 (2017)

    Article  ADS  Google Scholar 

  106. D. Bagrets, A. Altland, and A. Kamenev, Sachdev — Ye—Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911, 191 (2016)

    Article  ADS  MATH  Google Scholar 

  107. D. Stanford and E. Witten, Fermionic localization of the schwarzian theory, J. High Energy Phys. 2017(10), 1 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  108. T. G. Mertens, G. J. Turiaci, and H. L. Verlinde, Solving the Schwarzian via the conformal bootstrap, J. High Energy Phys. 2017(8), 1 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  109. Z. Yang, The quantum gravity dynamics of near extremal black holes, J. High Energy Phys. 2019, 205 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  110. A. Kamenev, Field Theory of Non-Equilibrium Systems, Cambridge University Press, 2011

  111. P. F. Zhang, Y. F. Gu, and A. Kitaev, An obstacle to sub-AdS holography for SYK-like models, J. High Energy Phys. 2021, 94 (2021))

    Article  MathSciNet  MATH  Google Scholar 

  112. D. N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71(9), 1291 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  113. I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS2 gravity, arXiv: 1707.02325 (2017)

  114. W. Israel, Thermo-field dynamics of black holes, Phys. Lett. A 57(2), 107 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  115. P. Lydzba, M. Rigol, and L. Vidmar, Eigenstate entanglement entropy in random quadratic Hamiltonians, Phys. Rev. Lett. 125(18), 180604 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  116. B. Bhattacharjee, P. Nandy, and T. Pathak, Eigenstate capacity and page curve in fermionic Gaussian states, Phys. Rev. B 104(21), 214306 (2021)

    Article  ADS  Google Scholar 

  117. H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A Math. Theor. 42(50), 504007 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  118. P. J. Forrester, Quantum conductance problems and the Jacobi ensemble, J. Phys. Math. Gen. 39(22), 6861 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  119. P. J. Forrester, Log-Gases and Random Matrices (LMS-34), Princeton University Press, 2010

  120. E. Bianchi, L. Hackl, and M. Kieburg, Page curve for fermionic Gaussian states, Phys. Rev. B 103(24), L241118 (2021)

    Article  ADS  Google Scholar 

  121. There are also studies on subsystem entropy of systems prepared in thermal ensembles and coupled to a bath [68].

  122. P. Zhang, Evaporation dynamics of the Sachdev—Ye—Kitaev model, Phys. Rev. B 100(24), 245104 (2019)

    Article  ADS  Google Scholar 

  123. A. Almheiri, A. Milekhin, and B. Swingle, Universal constraints on energy flow and SYK thermalization, arXiv: 1912.04912 (2019)

  124. Similar calculations has been carried out in [61] for SYK chains.

  125. M. P. Do Carmo, Differential geometry of curves and surfaces: Revised and updated second edition, Courier Dover Publications, 2016

  126. We thank Yingfei Gu for explaining this example.

  127. X. Dong, D. Harlow, and A. C. Wall, Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality, Phys. Rev. Lett. 117(2), 021601 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  128. Y. Chen, Pulling out the island with modular flow, J. High Energy Phys. 2020, 33 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  129. P. Hayden, S. Nezami, X. L. Qi, N. Thomas, M. Walter, and Z. Yang, Holographic duality from random tensor networks, J. High Energy Phys. 2016(11), 1 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  130. A. Nahum, S. Vijay, and J. Haah, Operator spreading in random unitary circuits, Phys. Rev. X 8(2), 021014 (2018)

    Google Scholar 

  131. C. Von Keyserlingk, T. Rakovszky, F. Pollmann, and S. L. Sondhi, Operator hydrodynamics, OTOCs, and entanglement growth in systems without conservation laws, Phys. Rev. X 8(2), 021013 (2018)

    Google Scholar 

  132. Here HI is not positive semidefinite. However, we can always make it positive semidefinite by shifting a large enough constant.

  133. H. Zhai, Ultracold Atomic Physics, Cambridge University Press, 2021

  134. M. Ippoliti, T. Rakovszky, and V. Khemani, Fractal, logarithmic and volume-law entangled non-thermal steady states via spacetime duality, arXiv: 2103.06873 (2021)

  135. X. Dong, The gravity dual of Rényi entropy, Nat. Commun. 7, 12472 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P. Quantum entanglement in the Sachdev—Ye—Kitaev model and its generalizations. Front. Phys. 17, 43201 (2022). https://doi.org/10.1007/s11467-022-1162-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1162-5

Keywords

Navigation