Skip to main content
Log in

Topological insulator: Spintronics and quantum computations

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Topological insulators are emergent states of quantum matter that are gapped in the bulk with time-reversal symmetry-preserved gapless edge/surface states, adiabatically distinct from conventional materials. By proximity to various magnets and superconductors, topological insulators show novel physics at the interfaces, which give rise to two new areas named topological spintronics and topological quantum computation. Effects in the former such as the spin torques, spin-charge conversion, topological antiferromagnetic spintronics, and skyrmions realized in topological systems will be addressed. In the latter, a superconducting pairing gap leads to a state that supports Majorana fermions states, which may provide a new path for realizing topological quantum computation. Various signatures of Majorana zero modes/edge mode in topological superconductors will be discussed. The review ends by outlooks and potential applications of topological insulators. Topological superconductors that are fabricated using topological insulators with superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)

    ADS  Google Scholar 

  2. X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)

    ADS  Google Scholar 

  3. C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88(3), 035005 (2016)

    ADS  Google Scholar 

  4. P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian, A. Richardella, M. Z. Hasan, R. J. Cava, and A. Yazdani, Topological surface states protected from backscattering by chiral spin texture, Nature 460(7259), 1106 (2009)

    ADS  Google Scholar 

  5. T. Zhang, P. Cheng, X. Chen, J. F. Jia, X. Ma, K. He, L. Wang, H. Zhang, X. Dai, Z. Fang, X. Xie, and Q. K. Xue, Experimental demonstration of topological surface states protected by time-reversal symmetry, Phys. Rev. Lett. 103(26), 266803 (2009)

    ADS  Google Scholar 

  6. K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)

    ADS  Google Scholar 

  7. D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)

    ADS  Google Scholar 

  8. J. E. Moore, The birth of topological insulators, Nature 464(7286), 194 (2010)

    ADS  Google Scholar 

  9. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006)

    ADS  Google Scholar 

  10. M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Quantum spin hall insulator state in HgTe quantum wells, Science 318(5851), 766 (2007)

    ADS  Google Scholar 

  11. D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A topological Dirac insulator in a quantum spin Hall phase, Nature 452(7190), 970 (2008)

    ADS  Google Scholar 

  12. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys. 5(6), 398 (2009)

    Google Scholar 

  13. C. L. Kane and E. J. Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95(14), 146802 (2005)

    ADS  Google Scholar 

  14. L. Fu, C. L. Kane, and E. J. Mele, Topological insulators in three dimensions, Phys. Rev. Lett. 98(10), 106803 (2007)

    ADS  Google Scholar 

  15. H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys. 5(6), 438 (2009)

    Google Scholar 

  16. N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90(1), 015001 (2018)

    ADS  MathSciNet  Google Scholar 

  17. D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of unconventional quantum spin textures in topological insulators, Science 323(5916), 919 (2009)

    ADS  Google Scholar 

  18. Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Experimental realization of a three-dimensional topological insulator, Bi2Te3, Science 325(5937), 178 (2009)

    ADS  Google Scholar 

  19. D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A tunable topological insulator in the spin helical Dirac transport regime, Nature 460(7259), 1101 (2009)

    ADS  Google Scholar 

  20. A. R. Mellnik, J. S. Lee, A. Richardella, J. L. Grab, P. J. Mintun, M. H. Fischer, A. Vaezi, A. Manchon, E. A. Kim, N. Samarth, and D. C. Ralph, Spin-transfer torque generated by a topological insulator, Nature 511(7510), 449 (2014)

    ADS  Google Scholar 

  21. Y. Fan and K. L. Wang, Spintronics based on topological insulators, Spin 06(02), 1640001 (2016)

    ADS  Google Scholar 

  22. R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science 329(5987), 61 (2010)

    ADS  Google Scholar 

  23. J. Wu, J. Liu, and X. J. Liu, Topological spin texture in a quantum anomalous Hall insulator, Phys. Rev. Lett. 113(13), 136403 (2014)

    ADS  Google Scholar 

  24. L. Fu and C. L. Kane, Superconducting proximity effect and majorana fermions at the surface of a topological insulator, Phys. Rev. Lett. 100(9), 096407 (2008)

    ADS  Google Scholar 

  25. J. Wang and S. C. Zhang, Topological states of condensed matter, Nat. Mater. 16(11), 1062 (2017)

    ADS  Google Scholar 

  26. B. Lian, X. Q. Sun, A. Vaezi, X. L. Qi, and S. C. Zhang, Topological quantum computation based on chiral Majorana fermions, Proc. Natl. Acad. Sci. USA 115(43), 10938 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  27. P. Deorani, J. Son, K. Banerjee, N. Koirala, M. Brahlek, S. Oh, and H. Yang, Observation of inverse spin Hall effect in bismuth selenide, Phys. Rev. B 90(9), 094403 (2014)

    ADS  Google Scholar 

  28. H. C. Han, Y. S. Chen, M. D. Davydova, P. N. Petrov, P. N. Skirdkov, J. G. Lin, J. C. Wu, J. C. A. Huang, K. A. Zvezdin, and A. K. Zvezdin, Spin pumping and probe in permalloy dots-topological insulator bilayers, Appl. Phys. Lett. 111(18), 182411 (2017)

    ADS  Google Scholar 

  29. A. A. Baker, A. I. Figueroa, L. J. Collins-McIntyre, G. van der Laan, and T. Hesjedal, Spin pumping in ferromagnet-topological insulator-ferromagnet heterostructures, Sci. Rep. 5(1), 7907 (2015)

    ADS  Google Scholar 

  30. J. C. Rojas-Sánchez, S. Oyarzun, Y. Fu, A. Marty, C. Vergnaud, S. Gambarelli, L. Vila, M. Jamet, Y. Ohtsubo, A. Taleb-Ibrahimi, P. Le Fevre, F. Bertran, N. Reyren, J. M. George, and A. Fert, Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films, Phys. Rev. Lett. 116(9), 096602 (2016)

    ADS  Google Scholar 

  31. C. N. Wu, Y. H. Lin, Y. T. Fanchiang, H. Y. Hung, H. Y. Lin, P. H. Lin, J. G. Lin, S. F. Lee, M. Hong, J. Kwo, Strongly enhanced spin current in topological insulator/ferromagnetic metal heterostructures by spin pumping, J. Appl. Phys. 117(17), 17D148 (2015)

    Google Scholar 

  32. Y. Fan, P. Upadhyaya, X. Kou, M. Lang, S. Takei, Z. Wang, J. Tang, L. He, L. T. Chang, M. Montazeri, G. Yu, W. Jiang, T. Nie, R. N. Schwartz, Y. Tserkovnyak, and K. L. Wang, Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure, Nat. Mater. 13(7), 699 (2014)

    ADS  Google Scholar 

  33. Y. Fan, X. Kou, P. Upadhyaya, Q. Shao, L. Pan, M. Lang, X. Che, J. Tang, M. Montazeri, K. Murata, L. T. Chang, M. Akyol, G. Yu, T. Nie, K. L. Wong, J. Liu, Y. Wang, Y. Tserkovnyak, and K. L. Wang, Electric-field control of spin-orbit torque in a magnetically doped topological insulator, Nat. Nanotechnol. 11(4), 352 (2016)

    ADS  Google Scholar 

  34. Z. Jiang, C. Z. Chang, M. R. Masir, C. Tang, Y. Xu, J. S. Moodera, A. H. MacDonald, and J. Shi, Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states, Nat. Commun. 7(1), 11458 (2016)

    ADS  Google Scholar 

  35. Y. Q. Huang, Y. X. Song, S. M. Wang, I. A. Buyanova, and W. M. Chen, Spin injection and helicity control of surface spin photocurrent in a three dimensional topological insulator, Nat. Commun. 8, 15401 (2017)

    ADS  Google Scholar 

  36. L. Liu, A. Richardella, I. Garate, Y. Zhu, N. Samarth, and C. T. Chen, Spin-polarized tunneling study of spin-momentum locking in topological insulators, Phys. Rev. B 91(23), 235437 (2015)

    ADS  Google Scholar 

  37. Y. Shiomi, K. Nomura, Y. Kajiwara, K. Eto, M. Novak, K. Segawa, Y. Ando, and E. Saitoh, Spin-electricity conversion induced by spin injection into topological insulators, Phys. Rev. Lett. 113(19), 196601 (2014)

    ADS  Google Scholar 

  38. Y. Lv, J. Kally, D. Zhang, J. S. Lee, M. Jamali, N. Samarth, and J. P. Wang, Unidirectional spin-Hall and Rashba-Edelstein magnetoresistance in topological insulator-ferromagnet layer heterostructures, Nat. Commun. 9(1), 111 (2018)

    ADS  Google Scholar 

  39. K. Yasuda, A. Tsukazaki, R. Yoshimi, K. S. Takahashi, M. Kawasaki, and Y. Tokura, Large unidirectional magnetoresistance in a magnetic topological insulator, Phys. Rev. Lett. 117(12), 127202 (2016)

    ADS  Google Scholar 

  40. Q. L. He, X. Kou, A. J. Grutter, G. Yin, L. Pan, X. Che, Y. Liu, T. Nie, B. Zhang, S. M. Disseler, B. J. Kirby, W. II Ratcliff, Q. Shao, K. Murata, X. Zhu, G. Yu, Y. Fan, M. Montazeri, X. Han, J. A. Borchers, and K. L. Wang, Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures, Nat. Mater. 16(1), 94 (2017)

    ADS  Google Scholar 

  41. Q. L. He, G. Yin, L. Yu, A. J. Grutter, L. Pan, C. Z. Chen, X. Che, G. Yu, B. Zhang, Q. Shao, A. L. Stern, B. Casas, J. Xia, X. Han, B. J. Kirby, R. K. Lake, K. T. Law, and K. L. Wang, Topological transitions induced by antiferromagnetism in a thin-film topological insulator, Phys. Rev. Lett. 121(9), 096802 (2018)

    ADS  Google Scholar 

  42. K. Yasuda, R. Wakatsuki, T. Morimoto, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, M. Ezawa, M. Kawasaki, N. Nagaosa, and Y. Tokura, Geometric Hall effects in topological insulator heterostructures, Nat. Phys. 12(6), 555 (2016)

    Google Scholar 

  43. C. Liu, Y. Zang, W. Ruan, Y. Gong, K. He, X. Ma, Q. K. Xue, and Y. Wang, Dimensional crossover-induced topological Hall effect in a magnetic topological insulator, Phys. Rev. Lett. 119(17), 176809 (2017)

    ADS  Google Scholar 

  44. Q. L. He, G. Yin, A. J. Grutter, L. Pan, X. Che, G. Yu, D. A. Gilbert, S. M. Disseler, Y. Liu, P. Shafer, B. Zhang, Y. Wu, B. J. Kirby, E. Arenholz, R. K. Lake, X. Han, and K. L. Wang, Exchange-biasing topological charges by antiferromagnetism, Nat. Commun. 9(1), 2767 (2018)

    ADS  Google Scholar 

  45. F. Wilczek, Majorana returns, Nat. Phys. 5(9), 614 (2009)

    Google Scholar 

  46. J. Nilsson, A. R. Akhmerov, and C. W. Beenakker, Splitting of a Cooper pair by a pair of Majorana bound states, Phys. Rev. Lett. 101(12), 120403 (2008)

    ADS  Google Scholar 

  47. M. Sato and Y. Ando, Topological superconductors: A review, Rep. Prog. Phys. 80(7), 076501 (2017)

    ADS  MathSciNet  Google Scholar 

  48. N. Read and D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B 61(15), 10267 (2000)

    ADS  Google Scholar 

  49. A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys. Uspekhi 44(10S), 131 (2001)

    ADS  Google Scholar 

  50. J. C. Teo and C. L. Kane, Majorana fermions and non-Abelian statistics in three dimensions, Phys. Rev. Lett. 104(4), 046401 (2010)

    ADS  Google Scholar 

  51. J. P. Xu, M. X. Wang, Z. L. Liu, J. F. Ge, X. Yang, C. Liu, Z. A. Xu, D. Guan, C. L. Gao, D. Qian, Y. Liu, Q. H. Wang, F. C. Zhang, Q. K. Xue, and J. F. Jia, Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure, Phys. Rev. Lett. 114(1), 017001 (2015)

    ADS  Google Scholar 

  52. H. H. Sun, K. W. Zhang, L. H. Hu, C. Li, G. Y. Wang, H. Y. Ma, Z. A. Xu, C. L. Gao, D. D. Guan, Y. Y. Li, C. Liu, D. Qian, Y. Zhou, L. Fu, S. C. Li, F. C. Zhang, and J. F. Jia, Majorana zero mode detected with spin selective andreev reflection in the vortex of a topological superconductor, Phys. Rev. Lett. 116(25), 257003 (2016)

    ADS  Google Scholar 

  53. F. Yang, Y. Ding, F. Qu, J. Shen, J. Chen, Z. Wei, Z. Ji, G. Liu, J. Fan, C. Yang, T. Xiang, and L. Lu, Proximity effect at superconducting Sn-Bi2Se3 interface, Phys. Rev. B 85, 104508 (2012)

    ADS  Google Scholar 

  54. G. Koren, T. Kirzhner, Y. Kalcheim, and O. Millo, Signature of proximity-induced px+ipy triplet pairing in the doped topological insulator Bi2Se3 by the s-wave superconductor NbN, Europhys. Lett. (EPL) 103(6), 67010 (2013)

    ADS  Google Scholar 

  55. J. Wang, C. Z. Chang, H. Li, K. He, D. Zhang, M. Singh, X.C. Ma, N. Samarth, M. Xie, Q.K. Xue, and M. H. W. Chan, Interplay between topological insulators and superconductors, Phys. Rev. B 85, 045415 (2012)

    ADS  Google Scholar 

  56. S. Sasaki, M. Kriener, K. Segawa, K. Yada, Y. Tanaka, M. Sato, and Y. Ando, Topological Superconductivity in CuxBi2Se3, Phys. Rev. Lett. 107(21), 217001 (2011)

    ADS  Google Scholar 

  57. S. Sasaki, Z. Ren, A. A. Taskin, K. Segawa, L. Fu, and Y. Ando, Odd-parity pairing and topological superconductivity in a strongly spin-orbit coupled semiconductor, Phys. Rev. Lett. 109(21), 217004 (2012)

    ADS  Google Scholar 

  58. Q. L. He, H. Liu, M. He, Y. H. Lai, H. He, G. Wang, K. T. Law, R. Lortz, J. Wang, and I. K. Sou, Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure, Nat. Commun. 5(1), 4247 (2014)

    ADS  Google Scholar 

  59. P. Zareapour, A. Hayat, S. Y. Zhao, M. Kreshchuk, A. Jain, D. C. Kwok, N. Lee, S. W. Cheong, Z. Xu, A. Yang, G. D. Gu, S. Jia, R. J. Cava, and K. S. Burch, Proximity-induced high-temperature superconductivity in the topological insulators Bi2Se3 and Bi2Te3, Nat. Commun. 3(1), 1056 (2012)

    ADS  Google Scholar 

  60. M. Veldhorst, M. Snelder, M. Hoek, T. Gang, V. K. Guduru, X. L. Wang, U. Zeitler, W. G. van der Wiel, A. A. Golubov, H. Hilgenkamp, and A. Brinkman, Josephson supercurrent through a topological insulator surface state, Nat. Mater. 11(5), 417 (2012)

    ADS  Google Scholar 

  61. F. Qu, F. Yang, J. Shen, Y. Ding, J. Chen, Z. Ji, G. Liu, J. Fan, X. Jing, C. Yang, and L. Lu, Strong superconducting proximity effect in Pb-Bi2Te3 hybrid structures, Sci. Rep. 2(1), 339 (2012)

    ADS  Google Scholar 

  62. J. R. Williams, A. J. Bestwick, P. Gallagher, S. S. Hong, Y. Cui, A. S. Bleich, J. G. Analytis, I. R. Fisher, and D. Goldhaber-Gordon, Unconventional Josephson effect in hybrid superconductor-topological insulator devices, Phys. Rev. Lett. 109(5), 056803 (2012)

    ADS  Google Scholar 

  63. S. Hart, H. Ren, T. Wagner, P. Leubner, M. Mühlbauer, C. Brüne, H. Buhmann, L. W. Molenkamp, and A. Yacoby, Induced superconductivity in the quantum spin Hall edge, Nat. Phys. 10, 638 (2014)

    Google Scholar 

  64. E. Bocquillon, R. S. Deacon, J. Wiedenmann, P. Leubner, T. M. Klapwijk, C. Brune, K. Ishibashi, H. Buhmann, and L. W. Molenkamp, Gapless Andreev bound states in the quantum spin Hall insulator HgTe, Nat. Nanotechnol. 12(2), 137 (2016)

    ADS  Google Scholar 

  65. M. X. Wang, C. Liu, J. P. Xu, F. Yang, L. Miao, M. Y. Yao, C. L. Gao, C. Shen, X. Ma, X. Chen, Z. A. Xu, Y. Liu, S. C. Zhang, D. Qian, J. F. Jia, and Q. K. Xue, The coexistence of superconductivity and topological order in the Bi2Se3 thin films, Science 336(6077), 52 (2012)

    ADS  Google Scholar 

  66. S. Y. Xu, N. Alidoust, I. Belopolski, A. Richardella, C. Liu, M. Neupane, G. Bian, S. H. Huang, R. Sankar, C. Fang, B. Dellabetta, W. Dai, Q. Li, M. J. Gilbert, F. Chou, N. Samarth, and M. Z. Hasan, Momentum-space imaging of Cooper pairing in a half-Dirac-gas topological superconductor, Nat. Phys. 10(12), 943 (2014)

    Google Scholar 

  67. E. Wang, H. Ding, A. V. Fedorov, W. Yao, Z. Li, Y. F. Lv, K. Zhao, L. G. Zhang, Z. Xu, J. Schneeloch, R. Zhong, S. H. Ji, L. Wang, K. He, X. Ma, G. Gu, H. Yao, Q. K. Xue, X. Chen, and S. Zhou, Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor, Nat. Phys. 9(10), 621 (2013)

    Google Scholar 

  68. Q. L. He, L. Pan, A. L. Stern, E. C. Burks, X. Che, G. Yin, J. Wang, B. Lian, Q. Zhou, E. S. Choi, K. Murata, X. Kou, Z. Chen, T. Nie, Q. Shao, Y. Fan, S. C. Zhang, K. Liu, J. Xia, and K. L. Wang, Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure, Science 357(6348), 294 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  69. C. F. Pai, Switching by topological insulators, Nat. Mater. 17(9), 755 (2018)

    ADS  Google Scholar 

  70. J. Han, A. Richardella, S. A. Siddiqui, J. Finley, N. Samarth, and L. Liu, Room-temperature spin-orbit torque switching induced by a topological insulator, Phys. Rev. Lett. 119(7), 077702 (2017)

    ADS  Google Scholar 

  71. Y. Wang, D. Zhu, Y. Wu, Y. Yang, J. Yu, R. Ramaswamy, R. Mishra, S. Shi, M. Elyasi, K. L. Teo, Y. Wu, and H. Yang, Room temperature magnetization switching in topological insulator-ferromagnet heterostructures by spin-orbit torques, Nat. Commun. 8(1), 1364 (2017)

    ADS  Google Scholar 

  72. M. Dc, R. Grassi, J. Y. Chen, M. Jamali, D. Reifsnyder Hickey, D. Zhang, Z. Zhao, H. Li, P. Quarterman, Y. Lv, M. Li, A. Manchon, K. A. Mkhoyan, T. Low, and J. P. Wang, Room-temperature high spin-orbit torque due to quantum confinement in sputtered BixSe1−x films, Nat. Mater. 17(9), 800 (2018)

    ADS  Google Scholar 

  73. N. H. D. Khang, Y. Ueda, and P. N. Hai, A conductive topological insulator with large spin Hall effect for ultralow power spin-orbit torque switching, Nat. Mater. 17(9), 808 (2018)

    ADS  Google Scholar 

  74. D. A. Ivanov, Non-Abelian statistics of half-quantum vortices in p-wave superconductors, Phys. Rev. Lett. 86(2), 268 (2001)

    ADS  Google Scholar 

  75. J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Non-Abelian statistics and topological quantum information processing in 1D wire networks, Nat. Phys. 7(5), 412 (2011)

    Google Scholar 

  76. D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J. Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Marcus, K. Flensberg, and J. Alicea, Milestones toward Majorana-based quantum computing, Phys. Rev. X 6, 031016 (2016)

    Google Scholar 

  77. T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M. B. Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge, Y. Oreg, C. M. Marcus, and M. H. Freedman, Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes, Phys. Rev. B 95(23), 235305 (2017)

    ADS  Google Scholar 

  78. J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75(7), 076501 (2012)

    ADS  Google Scholar 

  79. A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303(1), 2 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  80. S. Hart, H. Ren, T. Wagner, P. Leubner, M. Mühlbauer, C. Brüne, H. Buhmann, L. W. Molenkamp, and A. Yacoby, Induced superconductivity in the quantum spin Hall edge, Nat. Phys. 10(9), 638 (2014)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the supports from the National Natural Science Foundation of China (Grant No. 11874070), the National Key R&D Program of China (Grant No. 2018YFA0305601), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), and National Thousand-Young-Talents Program in China (Grant No. 8206100161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Lin He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Sun, H. & He, Q.L. Topological insulator: Spintronics and quantum computations. Front. Phys. 14, 43401 (2019). https://doi.org/10.1007/s11467-019-0893-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-019-0893-4

Keywords

Navigation