Skip to main content
Log in

Analytic calculation of high-order corrections to quantum phase transitions of ultracold Bose gases in bipartite superlattices

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We clarify some technical issues in the present generalized effective-potential Landau theory (GEPLT) to make the GEPLT more consistent and complete. Utilizing this clarified GEPLT, we analytically study the quantum phase transitions of ultracold Bose gases in bipartite superlattices at zero temperature. The corresponding quantum phase boundaries are analytically calculated up to the third-order hopping, which are in excellent agreement with the quantum Monte Carlo (QMC) simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen(De), and U. Sen, Ultracold atomic gases in optical lattices: Mimicking condensed matter physics and beyond, Adv. Phys. 56(2), 243 (2007)

    Article  ADS  Google Scholar 

  2. I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)

    Article  ADS  Google Scholar 

  3. J. Dalibard, F. Gerbier, G. Juzeliunas, and P. Öhberg, Artificial gauge potentials for neutral atoms, Rev. Mod. Phys. 83(4), 1523 (2011)

    Article  ADS  Google Scholar 

  4. V. Galitski and I. B. Spielman, Spin–orbit coupling in quantum gases, Nature 494(7435), 49 (2013)

    Article  ADS  Google Scholar 

  5. N. Goldman, G. Juzeliunas, P. Öhberg, and I. B. Spielman, Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys. 77(12), 126401 (2014)

    Article  ADS  Google Scholar 

  6. H. Zhai, Degenerate quantum gases with spin–orbit coupling: A review, Rep. Prog. Phys. 78(2), 026001 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Eckardt, Atomic quantum gases in periodically driven optical lattices, Rev. Mod. Phys. 89(1), 011004 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. I. Buluta and F. Nori, Quantum simulators, Science 326(5949), 108 (2009)

    Article  ADS  Google Scholar 

  9. I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86(1), 153 (2014)

    Article  ADS  Google Scholar 

  10. C. Gross and I. Bloch, Microscopy of many-body states in optical lattices, Annu. Rev. Cold At. Mol. 3, 181 (2015)

    Article  Google Scholar 

  11. M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Boson localization and the superfluidinsulator transition, Phys. Rev. B 40(1), 546 (1989)

    Article  ADS  Google Scholar 

  12. D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Cold bosonic atoms in optical lattices, Phys. Rev. Lett. 81(15), 3108 (1998)

    Article  ADS  Google Scholar 

  13. M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature 415(6867), 39 (2002)

    Article  ADS  Google Scholar 

  14. T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, The physics of dipolar bosonic quantum gases, Rep. Prog. Phys. 72(12), 126401 (2009)

    Article  ADS  Google Scholar 

  15. C. Trefzger, C. Menotti, B. Capogrosso-Sansone, and M. Lewenstein, Ultracold dipolar gases in optical lattices, J. Phys. At. Mol. Opt. Phys. 44(19), 193001 (2011)

    Article  ADS  Google Scholar 

  16. A. Lauer, D. Muth, and M. Fleischhauer, Transportinduced melting of crystals of Rydberg dressed atoms in a one-dimensional lattice, New J. Phys. 14(9), 095009 (2012)

    Article  ADS  Google Scholar 

  17. P. Schauß, M. Cheneau, M. Endres, T. Fukuhara, S. Hild, A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch, Observation of spatially ordered structures in a two-dimensional Rydberg gas, Nature 491(7422), 87 (2012)

    Article  ADS  Google Scholar 

  18. A. Safavi-Naini, S. G. Soyler, G. Pupillo, H. R. Sadeghpour, and B. Capogrosso-Sansone, Quantum phases of dipolar bosons in bilayer geometry, New J. Phys. 15(1), 013036 (2013)

    Article  ADS  Google Scholar 

  19. E. Altman, W. Hofstetter, E. Demler, and M. D. Lukin, Phase diagram of two-component bosons on an optical lattice, New J. Phys. 5, 113 (2003)

    Article  ADS  Google Scholar 

  20. P. Soltan-Panahi, D. Lühmann, J. Struck, P. Windpassinger, and K. Sengstock, Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices, Nat. Phys. 8(1), 71 (2012)

    Article  Google Scholar 

  21. A. Eckardt, P. Hauke, P. Soltan-Panahi, C. Becker, K. Sengstock, and M. Lewenstein, Frustrated quantum antiferromagnetism with ultracold bosons in a triangular lattice, Europhys. Lett. 89(1), 10010 (2010)

    Article  ADS  Google Scholar 

  22. S. Pielawa, E. Berg, and S. Sachdev, Frustrated quantum Ising spins simulated by spinless bosons in a tilted lattice: From a quantum liquid to antiferromagnetic order, Phys. Rev. B 86(18), 184435 (2012)

    Article  ADS  Google Scholar 

  23. J. Ye, K. Zhang, Y. Li, Y. Chen, and W. Zhang, Optical Bragg, atomic Bragg and cavity QED detections of quantum phases and excitation spectra of ultracold atoms in bipartite and frustrated optical lattices, Ann. Phys. 328, 103 (2013)

    Article  ADS  MATH  Google Scholar 

  24. S. Peil, J. V. Porto, B. Laburthe Tolra, J. M. Obrecht, B. E. King, M. Subbotin, S. L. Rolston, and W. D. Phillips, Patterned loading of a Bose–Einstein condensate into an optical lattice, Phys. Rev. A 67, 051603(R) (2003)

    Google Scholar 

  25. J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto, Lattice of double wells for manipulating pairs of cold atoms, Phys. Rev. A 73(3), 033605 (2006)

    Article  ADS  Google Scholar 

  26. S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, and I. Bloch, Direct observation of second-order atom tunnelling, Nature 448(7157), 1029 (2007)

    Article  ADS  Google Scholar 

  27. P. Cheinet, S. Trotzky, M. Feld, U. Schnorrberger, M. Moreno-Cardoner, S. Fölling, and I. Bloch, Counting atoms using interaction blockade in an optical superlattice, Phys. Rev. Lett. 101(9), 090404 (2008)

    Article  ADS  Google Scholar 

  28. G. B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath, and D. M. Stamper-Kurn, Ultracold atoms in a tunable optical Kagome lattice, Phys. Rev. Lett. 108(4), 045305 (2012)

    Article  ADS  Google Scholar 

  29. O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D. S. Lühmann, B. A. Malomed, T. Sowinski, and J. Zakrzewski, Non-standard Hubbard models in optical lattices: A review, Rep. Rrog. Phys. 78(6), 066001 (2015)

    Article  ADS  Google Scholar 

  30. M. Boninsegni and N. V. Prokof’ev, Supersolids: What and where are they? Rev. Mod. Phys. 84(2), 759 (2012)

    Article  ADS  Google Scholar 

  31. A. B. Kuklov and B. V. Svistunov, Counterflow superfluidity of two-species ultracold atoms in a commensurate optical lattice, Phys. Rev. Lett. 90(10), 100401 (2003)

    Article  ADS  Google Scholar 

  32. V. G. Rousseau, D. P. Arovas, M. Rigol, F. Hebert, G. G. Batrouni, and R. T. Scalettar, Exact study of the one-dimensional boson Hubbard model with a superlattice potential, Phys. Rev. B 73(17), 174516 (2006)

    Article  ADS  Google Scholar 

  33. G. Roux, T. Barthel, I. P. McCulloch, C. Kollath, U. Schollwöck, and T. Giamarchi, Quasiperiodic Bose–Hubbard model and localization in one-dimensional cold atomic gases, Phys. Rev. A 78(2), 023628 (2008)

    Article  ADS  Google Scholar 

  34. A. Dhar, T. Mishra, R. V. Pai, and B. P. Das, Quantum phases of ultracold bosonic atoms in a one-dimensional optical superlattice, Phys. Rev. A 83(5), 053621 (2011)

    Article  ADS  Google Scholar 

  35. P. Buonsante and A. Vezzani, Phase diagram for ultracold bosons in optical lattices and superlattices, Phys. Rev. A 70(3), 033608 (2004)

    Article  ADS  Google Scholar 

  36. J. M. Hou, Quantum phases of ultracold bosonic atoms in a two-dimensional optical superlattice, Mod. Phys. Lett. B 23(01), 25 (2009)

    Article  ADS  Google Scholar 

  37. B. L. Chen, S. P. Kou, Y. Zhang, and S. Chen, Quantum phases of the Bose–Hubbard model in optical superlattices, Phys. Rev. A 81(5), 053608 (2010)

    Article  ADS  Google Scholar 

  38. A. Dhar, M. Singh, R. V. Pai, and B. P. Das, Meanfield analysis of quantum phase transitions in a periodic optical superlattice, Phys. Rev. A 84(3), 033631 (2011)

    Article  ADS  Google Scholar 

  39. P. Buonsante, V. Penna, and A. Vezzani, Analytical mean-field approach to the phase-diagram of ultracold bosons in optical superlattices, Laser Phys. 15(2), 361 (2005)

    Google Scholar 

  40. D. Muth, A. Mering, and M. Fleischhauer, Ultracold bosons in disordered superlattices: Mott insulators induced by tunneling, Phys. Rev. A 77(4), 043618 (2008)

    Article  ADS  Google Scholar 

  41. P. Pisarski, R. M. Jones, and R. J. Gooding, Application of a multisite mean-field theory to the disordered Bose–Hubbard model, Phys. Rev. A 83(5), 053608 (2011)

    Article  ADS  Google Scholar 

  42. T. McIntosh, P. Pisarski, R. J. Gooding, and E. Zaremba, Multisite mean-field theory for cold bosonic atoms in optical lattices, Phys. Rev. A 86(1), 013623 (2012)

    Article  ADS  Google Scholar 

  43. P. Buonsante and A. Vezzani, Cell strong-coupling perturbative approach to the phase diagram of ultracold bosons in optical superlattices, Phys. Rev. A 72(1), 013614 (2005)

    Article  ADS  Google Scholar 

  44. P. Buonsante, V. Penna, and A. Vezzani, Phase coherence, visibility, and the superfluid–Mott-insulator transition on one-dimensional optical lattices, Phys. Rev. A 72, 031602(R) (2005)

    Google Scholar 

  45. Z. Lin, J. Zhang, and Y. Jiang, Analytical approach to quantum phase transitions of ultracold Bose gases in bipartite optical lattices using the generalized Green’s function method, Front. Phys. 13(4), 136401 (2018)

    Article  Google Scholar 

  46. J. Zhang and Y. Jiang, Quantum phase diagrams and time-of-flight pictures of spin-1 Bose systems in honeycomb optical lattices, Laser Phys. 26(9), 095501 (2016)

    Article  ADS  Google Scholar 

  47. F. Wei, J. Zhang, and Y. Jiang, Quantum phase diagram and time-of-flight absorption pictures of an ultracold Bose system in a square optical superlattice, Europhys. Lett. 113, 16004 (2016)

    Article  ADS  Google Scholar 

  48. T. Wang, X. F. Zhang, S. Eggert, and A. Pelster, Generalized effective-potential Landau theory for bosonic quadratic superlattices, Phys. Rev. A 87(6), 063615 (2013)

    Article  ADS  Google Scholar 

  49. Z. Lin, J. Zhang, and Y. Jiang, Quantum phase transitions of ultracold Bose systems in nonrectangular optical lattices, Phys. Rev. A 85(2), 023619 (2012)

    Article  ADS  Google Scholar 

  50. S. Paul and E. Tiesinga, Formation and decay of Bose–Einstein condensates in an excited band of a double-well optical lattice, Phys. Rev. A 88(3), 033615 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  51. F. E. A. dos Santos and A. Pelster, Quantum phase diagram of bosons in optical lattices, Phys. Rev. A 79(1), 013614 (2009)

    Article  ADS  Google Scholar 

  52. N. Teichmann, D. Hinrichs, M. Holthaus, and A. Eckardt, Process-chain approach to the Bose–Hubbard model: Ground-state properties and phase diagram, Phys. Rev. B 79(22), 224515 (2009)

    Article  ADS  Google Scholar 

  53. N. Teichmann, D. Hinrichs, and M. Holthaus, Reference data for phase diagrams of triangular and hexagonal bosonic lattices, Europhys. Lett. 91(1), 10004 (2010)

    Article  ADS  Google Scholar 

  54. M. Iskin, Route to supersolidity for the extended Bose–Hubbard model, Phys. Rev. A 83, 051606(R) (2011)

    Google Scholar 

  55. M. Di Liberto, T. Comparin, T. Kock, M. Ölschläger, A. Hemmerich, and C. M. Smith, Controlling coherence via tuning of the population imbalance in a bipartite optical lattice, Nat. Commun. 5(1), 5735 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Z. L. acknowledges inspiring discussions with Yan Chen, Ying Jiang and also thanks Tao Wang for providing the QMC data and useful discussions. Z. L. wishes also to thank Dan Bo Zhang for reading and providing useful comments on this manuscript. This work was supported by the State Key Programs of China (Grant Nos. 2017YFA0304204 and 2016YFA0300504), and the National Natural Science Foundation of China (Grant Nos. 11625416, and 11474064).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi Lin or Wanli Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Liu, W. Analytic calculation of high-order corrections to quantum phase transitions of ultracold Bose gases in bipartite superlattices. Front. Phys. 13, 136402 (2018). https://doi.org/10.1007/s11467-018-0811-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0811-1

Keywords

Navigation