Skip to main content
Log in

Quantum Two-breathers Formed by Ultracold Bosonic Atoms in Optical Lattices

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Two-discrete breathers are the bound states of two localized modes that can appear in classical nonlinear lattices. I investigate the quantum signature of two-discrete breathers in the system of ultracold bosonic atoms in optical lattices, which is modeled as Bose–Hubbard model containing n bosons. When the number of bosons is small, I find numerically quantum two-breathers by making use of numerical diagonalization and perturbation theory. For the cases of a large number of bosons, I can successfully construct quantum two-breather states in the Hartree approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lü, X., Tian, B.: Novel behavior and properties for the nonlinear pulse propagation in optical fibers. Europhys. Lett. 97, 10005 (2012)

    Article  Google Scholar 

  2. Lü, X., Peng, M.: Systematic construction of infinitely many conservation laws for certain nonlinear evolution equations in mathematical physics. Commun. Nonlinear Sci. Numer. Simul. 18, 2304–2312 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Lü, X., Peng, M.: Nonautonomous motion study on accelerated and decelerated solitons for the variablecoefficient Lenells-Fokas model. Chaos 23, 013122 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Lü, X., Peng, M.: Painlevé-integrability and explicit solutions of the general two-coupled nonlinear Schrödinger system in the optical fiber communications. Nonlinear Dyn. 73, 405 (2013)

    Article  MATH  Google Scholar 

  5. Liu, W.J., Tian, B., Zhen, H.L., Jiang, Y.: Analytic study on solitons in gas-filled hollow-core photonic crystal fibers. Europhys. Lett. 100, 64003 (2012)

    Article  ADS  Google Scholar 

  6. Liu, W.J., Tian, B., Zhang, H.Q., Xu, T., Li, H.: Solitary wave pulses in optical fibers with normal dispersion and higher-order effects. Phys. Rev. A 79, 063810 (2009)

    Article  ADS  Google Scholar 

  7. Zhang, H., Tang, D., Knize, R.J., Zhao, L., Bao, Q., Loh, K.P.: Graphene mode locked, wavelengthtunable, dissipative soliton fiber laser. Appl. Phys. Lett. 96, 111112 (2010)

    Article  ADS  Google Scholar 

  8. Zhao, C., Zou, Y., Chen, Y., Wang, Z., Lu, S., Zhang, H., Wen, S., Tang, D.: Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker. Opt. Express 20, 27888–27895 (2012)

    Article  ADS  Google Scholar 

  9. Wang, L., Zhu, Y.-J., Qi, F.-H., Li, M., Guo, R.: Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers. Chaos 25, 063111 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  10. Wang, L., Geng, C., Zhang, L.-L, Zhao, Y.-C: Characteristics of the nonautonomous breathers and rogue waves in a generalized Lenells-Fokas equation. EPL 108, 50009 (2014)

    Article  ADS  Google Scholar 

  11. Wang, L., Li, X., Qi, F.-H, Zhang, L.-L: Breather Interactions and Higher-order Nonautonomous Rogue Waves for the Inhomogeneous Nonlinear Schrödinger Maxwell–Bloch Equations, vol. 359, pp. 97–114 (2015)

  12. Wang, L., Li, M., Qi, F.-H, Xu, T.: Modulational instability, nonautonomous breathers and rogue waves for a variable coefficient derivative nonlinear Schrödinger equation in the inhomogeneous plasmas. Phys. Plasmas 22, 032308 (2015)

  13. Flach, S., Gorbach, A.V.: Discrete breathers – advances in theory and applications. Phys. Rep. 467, 1–116 (2008)

    Article  MATH  ADS  Google Scholar 

  14. Sievers, A.J., Takeno, S.: Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 61, 970–973 (1988)

    Article  ADS  Google Scholar 

  15. Page, J.B.: Asymptotic solutions for localized vibrational modes in strongly anharmonic periodic systems. Phys. Rev. B 41, 7835–7838 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  16. Sandusky, K.W., Page J.B., Schmidt, K.E.: Stability and motion of intrinsic localized modes in nonlinear periodic lattices. Phys. Rev. B 46, 6161–6168 (1990)

    Article  ADS  Google Scholar 

  17. Yoshimura, K., Watanbe, S.: Envelope soliton as an intrinsic localized mode in a one-dimensional nonlinear lattice. J. Phys. Soc. Jpn. 60, 82–87 (1991)

    Article  ADS  Google Scholar 

  18. Huang, G.X., Shi, Z.P., Xu, Z.X.: Asymmetric intrinsic localized modes in a homogeneous lattice with cubic and quartic anharmonictity. Phys. Rev. B 47, 14561–14564 (1993)

    Article  ADS  Google Scholar 

  19. Yoshimura, K.: Existence and stability of discrete breathers in diatomic Fermi–Pasta–Ulam type lattices. Nonlinearity 24, 293–317 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Flach, S.: Existence of localized excitations in nonlinear Hamiltonian lattices. Phys. Rev. E 51, 1503–1507 (1995)

    Article  ADS  Google Scholar 

  21. Feng, B.F., Kawahara, T.: Discrete breathers in two-dimensional nonlinear lattices. Wave Motion 45, 68 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Butt, I.A., Wattis, J.A.D.: Discrete breathers in a two-dimensional Fermi–Pasta–Ulam lattice. J. Phys. A Math. Gen. 39, 4955–4984 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Trías, E., Mazo, J.J., Orlando, T.P.: Discrete breathers in nonlinear lattices: experimental detection in a Josephson array. Phys. Rev. Lett. 84, 741 (2000)

    Article  ADS  Google Scholar 

  24. Sato, M., Sievers, A.J.: Direct observation of the discrete character of intrinsic localized modes in an antiferromagnet. Nature 432, 486–488 (2004)

    Article  ADS  Google Scholar 

  25. Sato, M., Hubbard, B.E., Sievers, A.J., Ilic, B., Czaplewski, D.A., Craighead, H.G.: Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array. Phys. Rev. Lett. 90, 044102 (2003)

    Article  ADS  Google Scholar 

  26. Fleurov, V.: Discrete quantum breathers: what do we know about them? Chaos 13, 676 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Wang, W.Z., Gammel, J.T, Bishop, A.R., Salkola, M.I.: Quantum breathers in a nonlinear lattice. Phys. Rev. Lett. 76, 3598–3601 (1996)

    Article  ADS  Google Scholar 

  28. Schulman, L.S., Tolkunov, D., Mihokova, E.: Stability of quantum breathers. Phys. Rev. Lett. 96, 065501 (2006)

    Article  ADS  Google Scholar 

  29. Proville, L.: Biphonons in the Klein-Gordon lattice. Phys. Rev. B 71, 104306 (2005)

    Article  ADS  Google Scholar 

  30. Proville, L.: Quantum breathers in a nonlinear Klein Gordon lattice. Phys. D 216, 191–199 (2006)

    Article  MATH  Google Scholar 

  31. Ivić, Z., Tsironis, G. P.: Biphonons in the β -Fermi–Pasta–Ulam model. Phys. D 216, 200–206 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Basu, S., Riseborough, P.S.: Quantized intrinsically localized modes of the Fermi-Pasta-Ulam lattice. Philos. Mag. 92, 134–144 (2012)

    Article  ADS  Google Scholar 

  33. Riseborough, P.S.: Quantized breather excitations of Fermi-Pasta-Ulam lattices. Phys. Rev. E 85, 011129 (2012)

    Article  ADS  Google Scholar 

  34. Hu, X.G., Xiang, J., Liu, Y., Xie, G.Q., Hu, K.: Boson bound states in the β-Fermi–Pasta Ulam model. Pramana 81, 839–848 (2013)

    Article  ADS  Google Scholar 

  35. Djoufack, Z.I., Kenfack-Jiotsa, A., Nguenang, J.P., Domngang, S.: Quantum signatures of breathers in a finite Heisenberg spin chain. J. Phys. Condens. Matter 22, 205502 (2010)

    Article  ADS  Google Scholar 

  36. Djoufack, Z.I., Kenfack-Jiotsa, A., Nguenang, J.P.: Quantum breathers in a finite Heisenberg spin chain with antisymmetric interactions. Eur. Phys. J. B 85, 96 (2012)

    Article  ADS  Google Scholar 

  37. Tang, B., Li, D.-J., Hu, K., Tang, Y.: Quantum breathers in the β-Fermi-Pasta-Ulam model Proceedings of the Romanian Academy, Series A, vol. 14, pp. 301–308 (2013)

  38. Tang, B., Li, D.-J., Tang, Y.: Quantum breathers in Heisenberg ferromagnetic chains with Dzyaloshinsky-Moriya interaction. Chaos 24, 023113 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  39. Tang, B., Li, D.-J., Tang, Y.: Controlling quantum breathers in Heisenberg ferromagnetic spin chains via an oblique magnetic field. Phys. Status Solidi B 251, 1063–1068 (2014)

    Article  ADS  Google Scholar 

  40. Tang, B., Li, D.-J., Tang, Y.: Quantum breathers in ferromagnetic chains with on-site easy axis anisotropy. Can. J. Phys. 91, 788–792 (2013)

    Article  Google Scholar 

  41. Winkler, K., et al.: Repulsively bound atom pairs in an optical lattice. Nature 441, 853–856 (2006)

    Article  ADS  Google Scholar 

  42. Nguenang, J.P., Pinto, R.A., Flach, S.: Quantum q-breathers in a finite Bose-Hubbard chain: the case of two interacting bosons. Phys. Rev. B 75, 214303 (2007)

    Article  ADS  Google Scholar 

  43. Kivshar, Y.S., Champneys, A.R., Cai, D., Bishop, A.R.: Multiple states of intrinsic localized modes. Phys. Rev. B 58, 5423–5428 (1998)

    Article  ADS  Google Scholar 

  44. Meister, M., Floría, L.M.: Bound states of breathers in the Frenkel-Kontorova model. Eur. Phys. J. B 37, 213–221 (2004)

    Article  ADS  Google Scholar 

  45. Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C.W., Zoller, P.: Cold bosonic atoms in optical lattice. Phys. Rev. Lett. 81, 3108 (1998)

    Article  ADS  Google Scholar 

  46. Scott, A.C., Eilbeck, J.C., Gilhøj, H.: Quantum lattice solitons. Phys. D 78, 194–213 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  47. Dorignac, J., Eilbeck, J.C., Salerno, M., Scott, A.C.: Quantum signatures of breather-breather interactions. Phys. Rev. Lett. 93, 025504 (2004)

    Article  ADS  Google Scholar 

  48. Wright, E., Eilbeck, J.C., Hays, M.H., Miller, P.D., Scott, A.C.: The quantum discrete self-trapping equation in the Hartree approximation. Phys. D 69, 18–32 (1993)

    Article  MATH  Google Scholar 

  49. Remoissenet, M.: Low-amplitude breather and envelope solitons in quasi-one-dimensional physical models. Phys. Rev. B 33, 2386–2392 (1986)

    Article  ADS  Google Scholar 

  50. Remoissenet, M.: Waves called solitons. Concepts and Experiments. 2nd edn., pp. 238–239. Springer, Berlin Heidelberg New York (1996)

    Google Scholar 

Download references

Acknowledgments

I am pleased to thank my teacher Prof. De-Jun Li for useful discussions and valuable suggestions. This work was supported by the National Natural Science Foundation of China under Grant No. 11264012 and the Talents Recruitment Program of Jishou University under Grant No. jsdxrcyjkyxm 201501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, B. Quantum Two-breathers Formed by Ultracold Bosonic Atoms in Optical Lattices. Int J Theor Phys 55, 2697–2710 (2016). https://doi.org/10.1007/s10773-015-2903-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2903-9

Keywords

Navigation