Skip to main content
Log in

Dynamics of coherence-induced state ordering under Markovian channels

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We study the dynamics of coherence-induced state ordering under incoherent channels, particularly four specific Markovian channels: amplitude damping channel, phase damping channel, depolarizing channel and bit flit channel for single-qubit states. We show that the amplitude damping channel, phase damping channel, and depolarizing channel do not change the coherence-induced state ordering by l1 norm of coherence, relative entropy of coherence, geometric measure of coherence, and Tsallis relative α-entropies, while the bit flit channel does change for some special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Åberg, Catalytic coherence, Phys. Rev. Lett. 113(15), 150402 (2014)

    Article  Google Scholar 

  2. V. Narasimhachar and G. Gour, Low-temperature thermodynamics with quantum coherence, Nat. Commun. 6(1), 7689 (2015)

    Article  ADS  Google Scholar 

  3. P. Ćwikliński, M. Studzinski, M. Horodecki, and J. Oppenheim, Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics, Phys. Rev. Lett. 115(21), 210403 (2015)

    Article  Google Scholar 

  4. M. Lostaglio, D. Jennings, and T. Rudolph, Description of quantum coherence in thermodynamic processes requires constraints beyond free energy, Nat. Commun. 6(1), 6383 (2015)

    Article  ADS  Google Scholar 

  5. M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, Quantum coherence, timetranslation symmetry, and thermodynamics, Phys. Rev. X 5(2), 021001 (2015)

    Google Scholar 

  6. M. B. Plenio and S. F. Huelga, Dephasing-assisted transport: Quantum networks and biomolecules, New J. Phys. 10(11), 113019 (2008)

    Article  ADS  Google Scholar 

  7. P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, Role of quantum coherence and environmental fluctuations in chromophoric energy transport, J. Phys. Chem. B 113(29), 9942 (2009)

    Article  Google Scholar 

  8. S. Lloyd, Quantum coherence in biological systems, J. Phys. Conf. Ser. 302, 012037 (2011)

    Article  Google Scholar 

  9. C. M. Li, N. Lambert, Y. N. Chen, G. Y. Chen, and F. Nori, Witnessing quantum coherence: From solid-state to biological systems, Sci. Rep. 2(1), 885 (2012)

    Article  Google Scholar 

  10. S. Huelga and M. Plenio, Vibrations, quanta and biology, Contemp. Phys. 54(4), 181 (2013)

    Article  ADS  Google Scholar 

  11. F. Levi and F. Mintert, A quantitative theory of coherent delocalization, New J. Phys. 16(3), 033007 (2014)

    Article  ADS  Google Scholar 

  12. H. Vazquez, R. Skouta, S. Schneebeli, M. Kamenetska, R. Breslow, L. Venkataraman, and M. Hybertsen, Probing the conductance superposition law in singlemolecule circuits with parallel paths, Nat. Nanotechnol. 7(10), 663 (2012)

    Article  ADS  Google Scholar 

  13. O. Karlström, H. Linke, G. Karlstrom, and A. Wacker, Increasing thermoelectric performance using coherent transport, Phys. Rev. B 84(11), 113415 (2011)

    Article  ADS  Google Scholar 

  14. J. Åberg, Quanatifying superposition, arXiv: 0612146 (2006)

    Google Scholar 

  15. T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113(14), 140401 (2014)

    Article  ADS  Google Scholar 

  16. A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, Measuring quantum coherence with entanglement, Phys. Rev. Lett. 115(2), 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. F. G. Zhang, L. H. Shao, Y. Luo, and Y. M. Li, Ordering states with Tsallis relative a-entropies of coherence, Quant. Inf. Process 16, 31 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. F. G. Zhang and Y. M. Li, Coherent-induced state ordering with fixed mixedness, arXiv: 1704.02244v1 (2017)

    Google Scholar 

  19. C. L. Liu, X. D. Yu, G. F. Xu, and D. M. Tong, Ordering states with coherence measures, Quantum Inform. Process. 15(10), 4189 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. X. Y. Hu, Channels that do not generate coherence, Phys. Rev. A 94(1), 012326 (2016)

    Article  ADS  Google Scholar 

  21. L. M. Yang, B. Chen, S. M. Fei, and Z. X. Wang, Ordering states with various coherence measures, Quant. Inf. Process 17, 91 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, LM., Chen, B., Fei, SM. et al. Dynamics of coherence-induced state ordering under Markovian channels. Front. Phys. 13, 130310 (2018). https://doi.org/10.1007/s11467-018-0780-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0780-4

Keywords

Navigation