Skip to main content
Log in

Ordering states with various coherence measures

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum coherence is one of the most significant theories in quantum physics. Ordering states with various coherence measures is an intriguing task in quantification theory of coherence. In this paper, we study this problem by use of four important coherence measures—the \(l_1\) norm of coherence, the relative entropy of coherence, the geometric measure of coherence and the modified trace distance measure of coherence. We show that each pair of these measures give a different ordering of qudit states when \(d\ge 3\). However, for single-qubit states, the \(l_1\) norm of coherence and the geometric coherence provide the same ordering. We also show that the relative entropy of coherence and the geometric coherence give a different ordering for single-qubit states. Then we partially answer the open question proposed in Liu et al. (Quantum Inf Process 15:4189, 2016) whether all the coherence measures give a different ordering of states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    Article  Google Scholar 

  2. Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)

    Article  ADS  Google Scholar 

  3. Ćwikliński, P., Studziński, M., Horodecki, M., Oppenheim, J.: Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics. Phys. Rev. Lett. 115, 210403 (2015)

    Article  Google Scholar 

  4. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  5. Lostaglio, M., Korzekwa, K., Jennings, D., Rudolph, T.: Quantum coherence, timetranslation symmetry, and thermodynamics. Phys. Rev. X 5, 021001 (2015)

    Google Scholar 

  6. Plenio, M.B., Huelga, S.F.: Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10, 113019 (2008)

    Article  ADS  Google Scholar 

  7. Rebentrost, P., Mohseni, M., Aspuru-Guzik, A.: Role of quantum coherence and environmental fluctuations in chromophoric energy transport. J. Phys. Chem. B 113, 9942 (2009)

    Article  Google Scholar 

  8. Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011)

    Article  Google Scholar 

  9. Li, C.-M., Lambert, N., Chen, Y.-N., Chen, G.-Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)

    Article  Google Scholar 

  10. Huelga, S., Plenio, M.: Vibrations, quanta and biology. Contemp. Phys. 54, 181 (2013)

    Article  ADS  Google Scholar 

  11. Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007 (2014)

    Article  ADS  Google Scholar 

  12. Vazquez, H., Skouta, R., Schneebeli, S., Kamenetska, M., Breslow, R., Venkataraman, L., Hybertsen, M.: Probing the conductance superposition law in singlemolecule circuits with parallel paths. Nat. Nanotechnol. 7, 663 (2012)

    Article  ADS  Google Scholar 

  13. Karlström, O., Linke, H., Karlström, G., Wacker, A.: Increasing thermoelectric performance using coherent transport. Phys. Rev. B 84, 113415 (2011)

    Article  ADS  Google Scholar 

  14. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  15. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. Yu, X.-D., Zhang, D.-J., Xu, G.-F., Tong, D.-M.: Alternative framework for quantifying coherence. Phys. Rev. A 94, 060302(R) (2016)

    Article  ADS  Google Scholar 

  17. Chen, B., Fei, S.-M.: Notes on modified trace distance measure of coherence. arXiv:1703.03265v1

  18. Virmani, S., Plenio, M.B.: Ordering states with entanglement measures. Phys. Lett. A 268, 31 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Liu, C.-L., Yu, X.-D., Xu, G.-F., Tong, D.-M.: Ordering states with coherence measures. Quantum Inf. Process. 15, 4189 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Zhang, H.-J., Chen, B., Li, M., Fei, S.-M., Long, G.-L.: Estimation on geometric of quantum coherence. Commun. Theor. Phys. 67, 166 (2017)

    Article  ADS  MATH  Google Scholar 

  21. Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015)

    Article  ADS  Google Scholar 

  22. Zhang, F.-G., Shao, L.-H., Luo, Y., Li, Y.-M.: Ordering states with Tsallis relative \(\alpha \)-entropies of coherence. Quantum. Inf. Process. 16, 31 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Zhang, F.-G., Li, Y.-M.: Coherent-induced state ordering with fixed mixedness. arXiv:1704.02244v1

  24. Maziero, J.: Hilbert–Schmidt quantum coherence in multi-qudit systems. Quantum Inf. Process. 16, 274 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSFC under Number 11675113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, LM., Chen, B., Fei, SM. et al. Ordering states with various coherence measures. Quantum Inf Process 17, 91 (2018). https://doi.org/10.1007/s11128-018-1856-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1856-3

Keywords

Navigation