Skip to main content
Log in

A versatile electrostatic trap with open optical access

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

A versatile electrostatic trap with open optical access for cold polar molecules in weak-field-seeking state is proposed in this paper. The trap is composed of a pair of disk electrodes and a hexapole. With the help of a finite element software, the spatial distribution of the electrostatic field is calculated. The results indicate that a three-dimensional closed electrostatic trap is formed. Taking ND3 molecules as an example, the dynamic process of loading and trapping is simulated. The results show that when the velocity of the molecular beam is 10 m/s and the loading time is 0.9964 ms, the maximum loading efficiency reaches 94.25% and the temperature of the trapped molecules reaches about 30.3 mK. A single well can be split into two wells, which is of significant importance to the precision measurement and interference of matter waves. This scheme, in addition, can be further miniaturized to construct one-dimensional, two-dimensional, and three-dimensional spatial electrostatic lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Hudson, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, Measurement of the electron electric dipole moment using YbF molecules, Phys. Rev. Lett. 89(2), 023003 (2002)

    Article  ADS  Google Scholar 

  2. J. Veldhoven, J. Küpper, H. L. Bethlem, B. Sartakov, A. J. A. Roij, and G. Meijer, Decelerated molecular beams for high-resolution spectroscopy, Eur. Phys. J. D 31(2), 337 (2004)

    Article  ADS  Google Scholar 

  3. E. R. Hudson, H. J. Lewandowski, B. C. Sawyer, and J. Ye, Cold molecule spectroscopy for constraining the evolution of the fine structure constant, Phys. Rev. Lett. 96(14), 143004 (2006)

    Article  ADS  Google Scholar 

  4. J. J. Gilijamse, S. Hoekstra, S. Y. T. van de Meerakker, G. C. Groenenboom, and G. Meijer, Near-threshold inelastic collisions using molecular beams with a tunable velocity, Science 313(5793), 1617 (2006)

    Article  ADS  Google Scholar 

  5. S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules, Phys. Rev. Lett. 100(4), 043203 (2008)

    Article  ADS  Google Scholar 

  6. B. C. Sawyer, B. K. Stuhl, M. Yeo, T. V. Tscherbul, M. T. Hummon, Y. Xia, J. Klos, D. Patterson, J. M. Doyle, and J. Ye, Cold heteromolecular dipolar collisions, Phys. Chem. Chem. Phys. 13(42), 19059 (2011)

    Article  Google Scholar 

  7. L. P. Parazzoli, N. Fitch, D. S. Lobser, and H. J. Lewandowski, High-energy-resolution molecular beams for cold collision studies, New J. Phys. 11(5), 055031 (2009)

    Article  ADS  Google Scholar 

  8. D. DeMille, Quantum computation with trapped polar molecules, Phys. Rev. Lett. 88(6), 067901 (2002)

    Article  ADS  Google Scholar 

  9. T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, Two-dimensional trapping of dipolar molecules in time-varying electric fields, Phys. Rev. Lett. 92(22), 223001 (2004)

    Article  ADS  Google Scholar 

  10. Y. Xia, Y. L. Yin, H. B. Chen, L. Z. Deng, and J. P. Yin, Electrostatic surface guiding for cold polar molecules: Experimental demonstration, Phys. Rev. Lett. 100(4), 043003 (2008)

    Article  ADS  Google Scholar 

  11. L. Z. Deng, Y. Liang, Z. X. Gu, S. Y. Hou, S. Q. Li, Y. Xia, and J. P. Yin, Experimental demonstration of a controllable electrostatic molecular beam splitter, Phys. Rev. Lett. 106(14), 140401 (2011)

    Article  ADS  Google Scholar 

  12. S. D. S. Gordon and A. Osterwalder, 3D-printed beam splitter for polar neutral molecules, Phys. Rev. Appl. 7(4), 044022 (2017)

    Article  ADS  Google Scholar 

  13. H. L. Bethlem, G. Berden, and G. Meijer, Decelerating neutral dipolar molecules, Phys. Rev. Lett. 83(8), 1558 (1999)

    Article  ADS  Google Scholar 

  14. M. Quintero-Pérez, P. Jansen, T. E. Wall, J. E. van den Berg, S. Hoekstra, and H. L. Bethlem, Static trapping of polar molecules in a traveling wave decelerator, Phys. Rev. Lett. 110(13), 133003 (2013)

    Article  ADS  Google Scholar 

  15. S. Y. Hou, S. Q. Li, L. Z. Deng, and J. P. Yin, Dependences of slowing results on both decelerator parameters and the new operating mode: Taking ND3 molecules as an example, J. Phys. At. Mol. Opt. Phys. 46(4), 045301 (2013)

    Article  ADS  Google Scholar 

  16. F. M. H. Crompvoets, H. L. Bethlem, R. T. Jongma, and G. Meijer, A prototype storage ring for neutral molecules, Nature 411(6834), 174 (2001)

    Article  ADS  Google Scholar 

  17. P. C. Zieger, S. Y. T. van de Meerakker, C. E. Heiner, H. L. Bethlem, A. J. A. van Roij, and G. Meijer, Multiple packets of neutral molecules revolving for over a mile, Phys. Rev. Lett. 105(17), 173001 (2010)

    Article  ADS  Google Scholar 

  18. S. Q. Li, L. Xu, L. Z. Deng, and J. P. Yin, Controllable electrostatic surface storage ring with opened optical access for cold polar molecules on a chip, J. Opt. Soc. Am. B 31(1), 110 (2014)

    Article  ADS  Google Scholar 

  19. S. J. Wark and G. I. Opat, An electrostatic mirror for neutral polar molecules, J. Phys. At. Mol. Opt. Phys. 25(20), 4229 (1992)

    Article  ADS  Google Scholar 

  20. H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, and G. Meijer, Electrostatic trapping of ammonia molecules, Nature 406(6795), 491 (2000)

    Article  ADS  Google Scholar 

  21. T. Rieger, T. Junglen, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, Continuous loading of an electrostatic trap for polar molecules, Phys. Rev. Lett. 95(17), 173002 (2005)

    Article  ADS  Google Scholar 

  22. S. A. Meek, H. Conrad, and G. Meijer, Trapping molecules on a chip, Science 324(5935), 1699 (2009)

    Article  ADS  Google Scholar 

  23. Z. X. Wang, Z. X. Gu, Y. Xia, X. Ji, and J. P. Yin, Optically accessible electrostatic trap for cold polar molecules, J. Opt. Soc. Am. B 30(9), 2348 (2013)

    Article  ADS  Google Scholar 

  24. M. Schnell, P. Lutzow, J. van Veldhoven, H. L. Bethlem, J. Kupper, B. Friedrich, M. Schleier-Smith, H. Haak, and G. Meijer, A linear AC trap for polar molecules in their ground state, J. Phys. Chem. A 111(31), 7411 (2007)

    Article  Google Scholar 

  25. Z. X. Wang, Z. X. Gu, L. Z. Deng, and J. P. Yin, Cooling and trapping polar molecules in an electrostatic trap, Chin. Phys. B 24(5), 053701 (2015)

    Article  ADS  Google Scholar 

  26. W. J. Mullin and F. Laloe, Interference effects in potential wells, Phys. Rev. A 91(5), 053629 (2015)

    Article  ADS  Google Scholar 

  27. W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hansch, Trapped-atom interferometer in a magnetic microtrap, Phys. Rev. A 64(6), 063607 (2001)

    Article  ADS  Google Scholar 

  28. S. J. Kim, H. Yu, S. T. Gang, D. Z. Anderson, and J. B. Kim, Controllable asymmetric double well and ring potential on an atom chip, Phys. Rev. A 93(3), 033612 (2016)

    Article  ADS  Google Scholar 

  29. P. R. Brooks, Reactions of oriented molecules, Science 193(4247), 11 (1976)

    Article  ADS  Google Scholar 

  30. M. Brouard, D. H. Parker, and S. Y. T. van de Meerakker, Taming molecular collisions using electric and magnetic fields, Chem. Soc. Rev. 43(21), 7279 (2014)

    Article  Google Scholar 

  31. L. J. LeBlanc, A. B. Bardon, J. McKeever, M. H. T. Extavour, D. Jervis, J. H. Thywissen, F. Piazza, and A. Smerzi, Dynamics of a tunable superfluid junction, Phys. Rev. Lett. 106(2), 025302 (2011)

    Article  ADS  Google Scholar 

  32. S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, The a.c. and d.c. Josephson effects in a Bose–Einstein condensate, Nature 449(7162), 579 (2007)

    Article  ADS  Google Scholar 

  33. S. Y. T. van de Meerakker, H. L. Bethlem, N. Vanhaecke, and G. Meijer, Manipulation and control of molecular beams, Chem. Rev. 112(9), 4828 (2012)

    Article  Google Scholar 

  34. L. Fusina and G. D. Lonardo, Inversion-rotation spectrum and spectroscopic parameters of 14ND3 in the ground state, J. Mol. Spectrosc. 112(1), 211 (1985)

    Article  ADS  Google Scholar 

  35. G. D. Lonardo and A. Trombetti, Dipole moment of the v 2 = 1 state of ND3 by saturation laser stark spectroscopy, Chem. Phys. Lett. 84(2), 327 (1981)

    Article  ADS  Google Scholar 

  36. G. Raithel, G. Birkl, A. Kastberg, W. D. Phillips, and S. L. Rolston, Cooling and localization dynamics in optical lattices, Phys. Rev. Lett. 78(4), 630 (1997)

    Article  ADS  Google Scholar 

  37. A. Hemmerich, M. Weidemuller, T. Esslinger, C. Zimmermann, and T. Hansch, Trapping atoms in a dark optical lattice, Phys. Rev. Lett. 75(1), 37 (1995)

    Article  ADS  Google Scholar 

  38. M. C. Fischer, K. W. Madison, Q. Niu, and M. G. Raizen, Observation of Rabi oscillations between Bloch bands in an optical potential, Phys. Rev. A 58, R2648(R) (1998)

    Article  ADS  Google Scholar 

  39. M. B. Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, Bloch oscillations of atoms in an optical potential, Phys. Rev. Lett. 76, 4508 (1996)

    Article  ADS  Google Scholar 

  40. C. Jurczak, B. Desruelle, K. Sengstock, J.-Y. Courtois, C. I. Westbrook, and A. Aspect, Atomic transport in an optical lattice: An investigation through polarizationselective intensity correlations, Phys. Rev. Lett. 77, 1727 (1996)

    Article  ADS  Google Scholar 

  41. S. K. Dutta, B. K. Teo, and G. Raithel, Tunneling dynamics and gauge potentials in optical lattices, Phys. Rev. Lett. 83(10), 1934 (1999)

    Article  ADS  Google Scholar 

  42. M. Weidemuller, A. Hemmerich, A. Gorlitz, T. Esslinger, and T. W. Hansch, Bragg diffraction in an atomic lattice bound by light, Phys. Rev. Lett. 75(25), 4583 (1995)

    Article  ADS  Google Scholar 

  43. J. K. Pachos and P. L. Knight, Quantum computation with a one-dimensional optical lattice, Phys. Rev. Lett. 91(10), 107902 (2003)

    Article  ADS  Google Scholar 

  44. J. P. Yin, W. J. Gao, N. C. Liu, J. J. Hu, and Y. Z. Wang, Magnetic guide and trap for cold neutral atoms with current-carrying wires and conductors, J. Chin. Chem. Soc. (Taipei) 48(3), 555 (2001)

    Article  Google Scholar 

  45. J. P. Yin, W. J. Gao, J. J. Hu, and Y. Q. Wang, Magnetic surface microtraps for realizing an array of alkali atomic Bose–Einstein condensates or Bose clusters, Opt. Commun. 206(1–3), 99 (2007)

    ADS  Google Scholar 

  46. J. P. Yin, W. J. Gao, J. J. Hu, and N. C. Liu, Atomic magnetic lattices and their applications, Chin. Phys. Lett. 19(3), 327 (2002)

    Article  ADS  Google Scholar 

  47. J. P. Yin, W. J. Gao, and J. J. Hu, Arrays of microscopic magnetic traps for cold atoms and their applications in atom optics, Chin. Phys. 11(5), 472 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11504318).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Qiang Li  (李胜强).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, SQ., Yin, JP. A versatile electrostatic trap with open optical access. Front. Phys. 13, 133701 (2018). https://doi.org/10.1007/s11467-017-0727-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0727-1

Keywords

Navigation