Skip to main content
Log in

New approaches in agent-based modeling of complex financial systems

  • Review article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Agent-based modeling is a powerful simulation technique to understand the collective behavior and microscopic interaction in complex financial systems. Recently, the concept for determining the key parameters of agent-based models from empirical data instead of setting them artificially was suggested. We first review several agent-based models and the new approaches to determine the key model parameters from historical market data. Based on the agents’ behaviors with heterogeneous personal preferences and interactions, these models are successful in explaining the microscopic origination of the temporal and spatial correlations of financial markets. We then present a novel paradigm combining big-data analysis with agent-based modeling. Specifically, from internet query and stock market data, we extract the information driving forces and develop an agent-based model to simulate the dynamic behaviors of complex financial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Black, Studies of stock price volatility changes, Alexandria, 1976. Proceedings of the 1976 Meetings of the American Statistical Association, Business and Economical Statistics Section, pp 177–181

    Google Scholar 

  2. R. N. Mantegna and H. E. Stanley, Scaling behavior in the dynamics of an economic index, Nature 376(6535), 46 (1995)

    Article  ADS  Google Scholar 

  3. P. Gopikrishnan, V. Plerou, L. A. N. Amaral, M. Meyer, and H. E. Stanley, Scaling of the distribution of fluctuations of financial market indices, Phys. Rev. E 60(5), 5305 (1999)

    Article  ADS  Google Scholar 

  4. Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C. K. Peng, and H. E. Stanley, Statistical properties of the volatility of price fluctuation, Phys. Rev. E 60(2), 1390 (1999)

    Article  ADS  Google Scholar 

  5. X. Gabaix, P. Gopikrishnan, V. Plerou, and H. E. Stanley, A theory of power-law distributions in financial market fluctuations, Nature 423(6937), 267 (2003)

    Article  ADS  MATH  Google Scholar 

  6. T. Qiu, B. Zheng, F. Ren, and S. Trimper, Returnvolatility correlation in financial dynamics, Phys. Rev. E 73(6), 065103 (2006)

    Article  ADS  Google Scholar 

  7. X. F. Jiang, T. T. Chen, and B. Zheng, Structure of local interactions in complex financial dynamics, Sci. Rep. 4, 5321 (2014)

    ADS  Google Scholar 

  8. B. Zheng, X. F. Jiang, and P. Y. Ni, A mini-review on econophysics: Comparative study of Chinese and western financial markets, Chin. Phys. B 23(7), 078903 (2014)

    Article  ADS  Google Scholar 

  9. L. Tan, B. Zheng, J. J. Chen, and X. F. Jiang, How volatilities nonlocal in time affect the price dynamics in complex financial systems, PLoS One 10(2), 118399 (2015)

    Google Scholar 

  10. T. Preis, J. J. Schneider, and H. E. Stanley, Switching processes in financial markets, Proc. Natl. Acad. Sci. USA 108(19), 7674 (2011)

    Article  ADS  MATH  Google Scholar 

  11. B. Podobnik, A. Valentinčič, D. Horvatič, and H. E. Stanley, Asymmetric Lévy flight in financial ratios, Proc. Natl. Acad. Sci. USA 108(44), 17883 (2011)

    Article  ADS  Google Scholar 

  12. W. Li, F. Z. Wang, S. Havlin, and H. E. Stanley, Financial factor influence on scaling and memory of trading volume in stock market, Phys. Rev. E 84(4), 046112 (2011)

    Article  ADS  Google Scholar 

  13. M. Tumminello, F. Lillo, J. Piilo, and R. N. Mantegna, Identification of clusters of investors from their real trading activity in a financial market, New J. Phys. 14(1), 013041 (2012)

    Article  ADS  Google Scholar 

  14. M. C. Münnix, T. Shimada, R. Schäfer, F. Leyvraz, T. H. Seligman, T. Guhr, and H. E. Stanley, Identifying states of a financial market, Sci. Rep. 2, 644 (2012)

    Article  Google Scholar 

  15. X. F. Jiang and B. Zheng, Anti-correlation and subsector structure in financial systems, Europhys. Lett. 97(4), 48006 (2012)

    Article  ADS  Google Scholar 

  16. X. F. Jiang, T. T. Chen, and B. Zheng, Time-reversal asymmetry in financial systems, Physica A 392(21), 5369 (2013)

    Article  ADS  Google Scholar 

  17. Y. Yura, H. Takayasu, D. Sornette, and M. Takayasu, Financial Brownian particle in the layered order-book fluid and fluctuation-dissipation relations, Phys. Rev. Lett. 112(9), 098703 (2014)

    Article  ADS  Google Scholar 

  18. A. Shleifer, Inefficient markets: An introduction to behavioral finance, J. Inst. & Theor. Econ. 158(2), 369 (2002)

    Article  Google Scholar 

  19. H. Jo and D. M. Kim, Recent development of behavioral finance, Int. J. Bus. Res. 8(2), 89 (2008)

    Google Scholar 

  20. L. Feng, B. Li, B. Podobnik, T. Preis, and H. E. Stanley, Linking agent-based models and stochastic models of financial markets, Proc. Natl. Acad. Sci. USA 09(22), 8388 (2012)

    Article  ADS  MATH  Google Scholar 

  21. J. J. Chen, B. Zheng, and L. Tan, Agent-based model with asymmetric trading and herding for complex financial systems, PLoS One 8(11), 79531 (2013)

    Article  ADS  Google Scholar 

  22. V. Gontis and A. Kononovicius, Consentaneous agent based and stochastic model of the financial markets, PLoS One 9(7), 102201 (2014)

    Article  ADS  Google Scholar 

  23. Y. Shapira, Y. Berman, and E. B. Jacob, Modelling the short term herding behaviour of stock markets, New J. Phys. 16(5), 53040 (2014)

    Article  Google Scholar 

  24. J. J. Chen, B. Zheng, and L. Tan, Agent-based model with multi-level herding for complex financial systems, Sci. Rep. 5, 8399 (2015)

    Article  ADS  Google Scholar 

  25. T. Kaizoji, M. Leiss, A. Saichev, and D. Sornette, Superexponential endogenous bubbles in an equilibrium model of fundamentalist and chartist traders, J. Econ. Behav. Organ. 112, 289 (2015)

    Article  Google Scholar 

  26. R. Savona, M. Soumare, and J. V. Andersen, Financial symmetry and moods in the market, PLoS One 10(4), 0118224 (2015)

    Article  Google Scholar 

  27. E. Samanidou, E. Zschischang, D. Stauffer, and T. Lux, Agent-based models of financial markets, Rep. Prog. Phys. 70(3), 409 (2007)

    Article  ADS  Google Scholar 

  28. R. N. Mantegna and J. Kertész, Focus on statistical physics modeling in economics and finance, New J. Phys. 13(2), 25011 (2011)

    Article  Google Scholar 

  29. A. Chakraborti, I. M. Toke, M. Patriarca, and F. Abergel, Econophysics review (II): Agent-based models, Quant. Finance 11(7), 1013 (2011)

    Article  MathSciNet  Google Scholar 

  30. D. Sornette, Physics and financial economics (1776–2014): Puzzles, Ising and agent-based models, Rep. Prog. Phys. 77(6), 62001 (2014)

    Article  MathSciNet  Google Scholar 

  31. T. Preis, H. S. Moat, H. E. Stanley, and S. R. Bishop, Quantifying the advantage of looking forward, Sci. Rep. 2, 350 (2012)

    ADS  Google Scholar 

  32. I. Bordino, S. Battiston, G. Caldarelli, M. Cristelli, A. Ukkonen, and I. Weber, Web search queries can predict stock market volumes, PLoS One 7(7), 40014 (2012)

    Article  ADS  Google Scholar 

  33. T. Preis, H. S. Moat, and H. E. Stanley, Quantifying trading behavior in financial markets using google trends, Sci. Rep. 3, 1684 (2013)

    ADS  Google Scholar 

  34. H. S. Moat, C. Curme, A. Avakian, D. Y. Kenett, H. E. Stanley, and T. Preis, Quantifying wikipedia usage patterns before stock market moves, Sci. Rep. 3, 1801 (2013)

    Article  ADS  Google Scholar 

  35. R. Hisano, D. Sornette, T. Mizuno, T. Ohnishi, and T. Watanabe, High quality topic extraction from business news explains abnormal financial market volatility, PLoS One 8(6), 64846 (2013)

    Article  ADS  Google Scholar 

  36. L. Kristoufek, Can google trends search queries contribute to risk diversification, Sci. Rep. 3, 2713 (2013)

    ADS  Google Scholar 

  37. T. Noguchi, N. Stewart, C. Y. Olivola, H. S. Moat, and T. Preis, Characterizing the time-perspective of nations with search engine query data, PLoS One 9(4), e95209 (2014)

    Article  ADS  Google Scholar 

  38. C. Curme, T. Preis, H. E. Stanley, and H. S. Moat, Quantifying the semantics of search behavior before stock market moves, Proc. Natl. Acad. Sci. USA 111(32), 11600 (2014)

    Article  ADS  Google Scholar 

  39. F. Lillo, S. Micciche, M. Tumminello, J. Piilo, and R. N. Mantegna, How news affects the trading behaviour of different categories of the investors in a financial market, Quant. Finance 15(2), 213 (2015)

    Article  MathSciNet  Google Scholar 

  40. I. Giardina, J. P. Bouchaud, and M. Mézard, Microscopic models for long ranged volatility correlations, Physica A 299(1–2), 28 (2001)

    Article  ADS  MATH  Google Scholar 

  41. E. Bonabeau, Agent-based modeling: methods and techniques for simulating human systems, Proc. Natl. Acad. Sci. USA 99(Suppl. 3), 7280 (2002)

    Article  ADS  Google Scholar 

  42. T. P. Evans and H. Kelley, Multi-scale analysis of a household level agent-based model of landcover change, J. Environ. Manage. 72(1–2), 57 (2004)

    Article  Google Scholar 

  43. F. Ren, B. Zheng, T. Qiu, and S. Trimper, Minority games with score-dependent and agent-dependent payoffs, Phys. Rev. E 74(4), 041111 (2006)

    Article  ADS  Google Scholar 

  44. J. D. Farmer and D. Foley, The economy needs agent based modelling, Nature 460(7256), 685 (2009)

    Article  ADS  Google Scholar 

  45. F. Schweitzer, G. Fagiolo, D. Sornette, F. V. Redondo, A. Vespignani, and D. R. White, Economic networks: The new challenges, Science 325, 422 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  46. S. Mike and J. D. Farmer, An empirical behavioral model of liquidity and volatility, J. Econo. Dyn. Contr. 32(1), 200 (2008)

    Article  Google Scholar 

  47. G. F. Gu and W. X. Zhou, On the probability distribution of stock returns in the mike-farmer model, Eur. Phys. J. B 67(4), 585 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. G. F. Gu and W. X. Zhou, Emergence of long memory in stock volatility from a modified mike-farmer model, Europhys. Lett. 86, 48002 (2009)

    Article  ADS  Google Scholar 

  49. H. Meng, F. Ren, G. F. Gu, X. Xiong, Y. J. Zhang, W. X. Zhou, and W. Zhang, Effects of long memory in the order submission process on the properties of recurrence intervals of large price fluctuations, Europhys. Lett. 98(3), 38003 (2012)

    Article  ADS  Google Scholar 

  50. J. Zhou, G. F. Gu, Z. Q. Jiang, X. Xiong, W. Chen, W. Zhang, and W. X. Zhou, Computational experiments successfully predict the emergence of autocorrelations in ultrahigh-frequency stock returns, Comput. Econ. (2016) (in press)

    Google Scholar 

  51. T. T. Chen, B. Zheng, and Y. Li, Information driving forces and agent-based modelling (submitted)

  52. L. Menkhoff, The use of technical analysis by fund managers: International evidence, J. Bank. Finance 34(11), 2573 (2010)

    Article  Google Scholar 

  53. V. M. Eguíluz and M. G. Zimmermann, Transmission of information and herd behavior: An application to financial markets, Phys. Rev. Lett. 85(26), 5659 (2000)

    Article  ADS  Google Scholar 

  54. D. Y. Kenett, Y. Shapira, A. Madi, S. Bransburg-Zabary, G. Gur-Gershgoren, and E. Ben-Jacob, Index cohesive force analysis reveals that the US market became prone to systemic collapses since 2002, PLoS One 6(4), e19378 (2011)

    Article  ADS  Google Scholar 

  55. J. Shen and B. Zheng, On return-volatility correlation in financial dynamics, Europhys. Lett. 88(2), 28003 (2009)

    Article  ADS  Google Scholar 

  56. B. J. Park, Asymmetric herding as a source of asymmetric return volatility, J. Bank. Finance 35(10), 2657 (2011)

    Article  Google Scholar 

  57. K. A. Kim and J. R. Nofsinger, Institutional herding, business groups, and economic regimes: Evidence from Japan, J. Bus. 78(1), 213 (2005)

    Article  Google Scholar 

  58. A. Walter and F. M. Weber, Herding in the German mutual fund industry, Eur. Financ. Manag. 12(3), 375 (2006)

    Article  Google Scholar 

  59. R. Cont and J. P. Bouchaud, Herd behavior and aggregate fluctuations in financial markets, Macroecon. Dyn. 4(02), 170 (2000)

    Article  MATH  Google Scholar 

  60. N. Blasco, P. Corredor, and S. Ferreruela, Does herding affect volatility? Implications for the Spanish stock market, Quant. Finance 12(2), 311 (2012)

    Article  MathSciNet  Google Scholar 

  61. J. P. Bouchaud, A. Matacz, and M. Potters, Leverage effect in financial markets: The retarded volatility model, Phys. Rev. Lett. 87(22), 228701 (2001)

    Article  ADS  Google Scholar 

  62. Y. H. Shao, G. F. Gu, Z. Q. Jiang, W. X. Zhou, and D. Sornette, Comparing the performance of fa, dfa and dma using different synthetic long-range correlated time series, Sci. Rep. 2, 5225 (2012)

    Article  Google Scholar 

  63. P. Gopikrishnan, M. Meyer, L. A. N. Amaral, and H. E. Stanley, Inverse cubic law for the distribution of stock price variations, Eur. Phys. J. B 3(2), 139 (1998)

    Article  ADS  Google Scholar 

  64. G. F. Gu, W. Chen, and W. X. Zhou, Empirical distributions of Chinese stock returns at different microscopic timescales, Physica A 387(2–3), 495 (2008)

    Article  ADS  Google Scholar 

  65. V. Plerou, P. Gopikrishnan, L. A. Nunes Amaral, M. Meyer, and H. E. Stanley, Scaling of the distribution of price fluctuations of individual companies, Phys. Rev. E 60(6), 6519 (1999)

    Article  ADS  Google Scholar 

  66. G. H. Mu and W. X. Zhou, Tests of nonuniversality of the stock return distributions in an emerging market, Phys. Rev. E 82(6), 066103 (2010)

    Article  ADS  Google Scholar 

  67. V. Plerou, P. Gopikrishnan, and H. E. Stanley, Twophase behaviour of financial markets, Nature 421(6919), 130 (2003)

    Article  ADS  Google Scholar 

  68. V. Plerou, P. Gopikrishnan, X. Gabaix, and H. E. Stanley, Quantifying stock-price response to demand fluctuations, Phys. Rev. E 66, 027104 (2002)

    Article  ADS  Google Scholar 

  69. A. Utsugi, K. Ino, and M. Oshikawa, Random matrix theory analysis of cross correlations in financial markets, Phys. Rev. E 70, 026110 (2004)

    Article  ADS  Google Scholar 

  70. R. K. Pan and S. Sinha, Self-organization of price fluctuation distribution in evolving markets, Europhys. Lett. 77(5), 58004 (2007)

    Article  ADS  Google Scholar 

  71. J. Shen and B. Zheng, Cross-correlation in financial dynamics, Europhys. Lett. 86(4), 48005 (2009)

    Article  ADS  Google Scholar 

  72. B. Podobnik, D. Wang, D. Horvatic, I. Grosse, and H. E. Stanley, Time-lag cross-correlations in collective phenomena, Europhys. Lett. 90(6), 68001 (2010)

    Article  ADS  Google Scholar 

  73. L. Corazzini and B. Greiner, Herding, social preferences and (non-)conformity, Econ. Lett. 97(1), 74 (2007)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 11375149 and 11505099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zheng.

Additional information

arXiv: 1703.06840.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, TT., Zheng, B., Li, Y. et al. New approaches in agent-based modeling of complex financial systems. Front. Phys. 12, 128905 (2017). https://doi.org/10.1007/s11467-017-0661-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0661-2

Keywords

PACS numbers

Navigation