Skip to main content
Log in

Explosive synchronization enhances selectivity: Example of the cochlea

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Acoustical signal transduction in the cochlea is an active process that involves nonlinear amplification and spontaneous otoacoustic emissions. Signal transduction involves individual subunits composed of globally coupled hair cells, which can be modeled as oscillators close to a Hopf bifurcation. The coupling may induce a transition toward synchronization, which in turn leads to a strong nonlinear response. In the model studied here, the synchronization transition of the subunit is discontinuous (explosive) in the absence of an external stimulus. We show that, in the presence of an external stimulus and for a coupling strength slightly lower than the critical value leading to explosive synchronization, the response of the subunit has better frequency selectivity and a larger signal-to-noise ratio. From physiological observations that subunits are themselves coupled together, we further propose a model of the complete cochlea, accounting for the ensemble of frequencies that the organ is able to detect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Robles and M. A. Ruggero, Mechanics of the mammalian cochlea, Physiol. Rev. 81, 1305 (2001)

    Google Scholar 

  2. A. Hudspeth, Hearing, in: Principles of Neural Science, 4th Ed., McGraw-Hill, 2000

    Google Scholar 

  3. J. O. Pickles, An Introduction to the Physiology of Hearing, 2nd Ed., Academic Press, 1988

    Google Scholar 

  4. S. S. Narayan, A. N. Temchin, A. Recio, and M. A. Ruggero, Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae, Science 282(5395), 1882 (1998)

    Article  ADS  Google Scholar 

  5. J. F. Ashmore, G. S. Géléoc, and L. Harbott, Molecular mechanisms of sound amplification in the mammalian cochlea, Proc. Natl. Acad. Sci. USA 97(22), 11759 (2000)

    Article  ADS  Google Scholar 

  6. K. E. Nilsen and I. J. Russell, The spatial and temporal representation of a tone on the guinea pig basilar membrane, Proc. Natl. Acad. Sci. USA 97(22), 11751 (2000)

    Article  ADS  Google Scholar 

  7. D. T. Kemp, Stimulated acoustic emissions from within the human auditory system, J. Acoust. Soc. Am. 64(5), 1386 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  8. R. Probst, B. L. Lonsbury-Martin, G. K. Martin, B. L. Lonsburymartin, and G. K. Martin, A review of otoacoustic emissions, J. Acoust. Soc. Am. 89(5), 2027 (1991)

    Article  ADS  Google Scholar 

  9. V. M. Eguíluz, M. Ospeck, Y. Choe, A. J. Hudspeth, and M. O. Magnasco, Essential nonlinearities in hearing, Phys. Rev. Lett. 84(22), 5232 (2000)

    Article  ADS  Google Scholar 

  10. S. Camalet, T. Duke, F. Jüicher, and J. Prost, Auditory sensitivity provided by self-tuned critical oscillations of hair cells, Proc. Natl. Acad. Sci. USA 97(7), 3183 (2000)

    Article  ADS  Google Scholar 

  11. J. Cartwright, D. González, and O. Piro, Nonlinear dynamics of the perceived pitch of complex sounds, Phys. Rev. Lett. 82(26), 5389 (1999)

    Article  ADS  Google Scholar 

  12. K. A. Montgomery, M. Silber, and S. A. Solla, Amplification in the auditory periphery: The effect of coupling tuning mechanisms, Phys. Rev. E 75(5), 051924 (2007)

    Article  ADS  Google Scholar 

  13. M. O. Magnasco, A wave traveling over a Hopf instability shapes the cochlear tuning curve, Phys. Rev. Lett. 90(5), 058101 (2003)

    Article  ADS  Google Scholar 

  14. T. Duke and F. Jülicher, Active traveling wave in the cochlea, Phys. Rev. Lett. 90(15), 158101 (2003)

    Article  ADS  Google Scholar 

  15. P. L. Boyland, Bifurcations of circle maps: Arnol’d tongues, bistability and rotation intervals, Commun. Math. Phys. 106(3), 353 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Kern and R. Stoop, Essential role of couplings between hearing nonlinearities, Phys. Rev. Lett. 91(12), 128101 (2003)

    Article  ADS  Google Scholar 

  17. R. Stoop and A. Kern, Two-tone suppression and combination tone generation as computations performed by the hopf cochlea, Phys. Rev. Lett. 93(26), 8103 (2004)

    Article  Google Scholar 

  18. K. Dierkes, B. Lindner, and F. Jüicher, Enhancement of sensitivity gain and frequency tuning by coupling of active hair bundles, Proc. Natl. Acad. Sci. USA 105(48), 18669 (2008)

    Article  ADS  Google Scholar 

  19. A. Vilfan, and T. Duke, Frequency clustering in spontaneous otoacoustic emissions from a Lizard’s ear, Biophys. J. 95(10), 4622 (2008)

    Article  ADS  Google Scholar 

  20. M. Gelfand, O. Piro, M. O. Magnasco, and A. J. Hudspeth, Hudspeth a J. Interactions between hair cells shape spontaneous otoacoustic emissions in a model of the Tokay Gecko’s cochlea, PLoS One 5(6), e11116 (2010)

    Article  ADS  Google Scholar 

  21. H. P. Wit and P. van Dijk, Are human spontaneous otoacoustic emissions generated by a chain of coupled nonlinear oscillators? J. Acoust. Soc. Am. 132(2), 918 (2012)

    Article  ADS  Google Scholar 

  22. Z. Liu, B. Li, and Y.-C. Lai, Enhancing mammalian hearing by a balancing between spontaneous otoacoustic emissions and spatial coupling, Europhys. Lett. 98(2), 20005 (2012)

    Article  ADS  Google Scholar 

  23. G. A. Manley, Cochlear mechanisms from a phylogenetic viewpoint, Proc. Natl. Acad. Sci. USA 97(22), 11736 (2000)

    Article  ADS  Google Scholar 

  24. C. Köppl, Morphology of the basilar papilla of the bobtail lizard Tiliqua rugosa, Hear. Res. 35(2–3), 209 (1988)

    Article  Google Scholar 

  25. J. Gómez-Gardenes, S. Gómez, A. Arenas, and Y. Moreno, Explosive synchronization transitions in scalefree networks, Phys. Rev. Lett. 106(12), 128701 (2011)

    Article  ADS  Google Scholar 

  26. I. Leyva, R. Sevilla-Escoboza, J. M. Buldú, I. Sendina- Nadal, J. Gomez-Gardenes, A. Arenas, Y. Moreno, S. Gómez, R. Jaimes-Reátegui, and S. Boccaletti, Explosive first-order transition to synchrony in networked chaotic oscillators, Phys. Rev. Lett. 108(16), 168702 (2012)

    Article  ADS  Google Scholar 

  27. P. Ji, T. K. D. Peron, P. J. Menck, F. A. Rodrigues, and J. Kurths, Cluster explosive synchronization in complex networks, Phys. Rev. Lett. 110(21), 218701 (2013)

    Article  ADS  Google Scholar 

  28. X. Zhang, X. Hu, J. Kurths, and Z. Liu, Explosive synchronization in a general complex network, Phys. Rev. E 88(1), 010802 (2013)

    Article  ADS  Google Scholar 

  29. I. Leyva, A. Navas, I. Sendina-Nadal, J. A. Almendral, J. M. Buldú, M. Zanin, D. Papo, and S. Boccaletti, Explosive transitions to synchronization in networks of phase oscillators, Sci. Rep. 3, 1281 (2013)

    Article  ADS  Google Scholar 

  30. Y. Zou, T. Pereira, M. Small, Z. Liu, and J. Kurths, Basin of attraction determines hysteresis in explosive synchronization, Phys. Rev. Lett. 112(11), 114102 (2014)

    Article  ADS  Google Scholar 

  31. X. Zhang, Y. Zou, S. Boccaletti, and Z. Liu, Explosive synchronization as a process of explosive percolation in dynamical phase space, Sci. Rep. 4, 5200 (2014)

    ADS  Google Scholar 

  32. X. Hu, S. Boccaletti, W. Huang, X. Zhang, Z. Liu, S. Guan, and C. H. Lai, Exact solution for first-order synchronization transition in a generalized Kuramoto model, Sci. Rep. 4, 7262 (2014)

    Article  ADS  Google Scholar 

  33. X. Zhang, S. Boccaletti, S. Guan, and Z. Liu, Explosive synchronization in adaptive and multilayer networks, Phys. Rev. Lett. 114(3), 038701 (2015)

    Article  ADS  Google Scholar 

  34. T. Qiu, Y. Zhang, J. Liu, H. Bi, S. Boccaletti, Z. Liu, and S. Guan, Landau damping effects in the synchronization of conformist and contrarian oscillators, Sci. Rep. 5, 18235 (2015)

    Article  ADS  Google Scholar 

  35. P. C. Matthews, R. E. Mirollo, and S. H. Strogatz, Dynamics of a large system of coupled nonlinear oscillators, Physica D 52(2–3), 293 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. C. Wang and N. Garnier, Continuous and discontinuous transitions to synchronization, arXiv: 1609.05584

  37. J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77(1), 137 (2005)

    Article  ADS  Google Scholar 

  38. P. D. Welsby, The 12, 24, or is it 26 cranial nerves? Postgrad. Med. J. 80(948), 602 (2004)

    Article  Google Scholar 

  39. L. Fredrickson-Hemsing, S. Ji, R. Bruinsma, and D. Bozovic, Mode-locking dynamics of hair cells of the inner ear, Phys. Rev. E 86(2), 21915 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas B. Garnier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CQ., Pumir, A., Garnier, N.B. et al. Explosive synchronization enhances selectivity: Example of the cochlea. Front. Phys. 12, 128901 (2017). https://doi.org/10.1007/s11467-016-0634-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0634-x

Keywords

Navigation