Skip to main content
Log in

Quasi-periodic solutions for class of Hamiltonian partial differential equations with fixed constant potential

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

We consider Hamiltonian partial differential equations u tt +| x u|+σu = f(u); x ∈ T; t ∈ ℝ; with periodic boundary conditions, where f(u) is a real-analytic function of the form f(u) = u5 + o(u5) near u = 0; σ ∈ (0; 1) is a fixed constant, and T = ℝ/2πℤ: A family of quasi-periodic solutions with 2-dimensional are constructed for the equation above with π ∈ (0; 1)ℚ: The proof is based on infinite-dimensional KAM theory and partial Birkhoff normal form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bambusi D. On long time stability in Hamiltonian perturbations of non-resonant linear PDEs. Nonlinearity, 1999, 12: 823–850

    Article  MATH  MathSciNet  Google Scholar 

  2. Chierchia L, You J. KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Comm Math Phys, 2000, 211: 498–525

    Article  MATH  MathSciNet  Google Scholar 

  3. Craig W, Worfolk P A. An integrable normal form for water waves in infinite depth. Phys D, 1995, 84: 513–531

    Article  MATH  MathSciNet  Google Scholar 

  4. Craig W, Sulem C. Mapping properties of normal forms transformations for water waves. Boll Unione Mat Ital, 2016, 9(2): 289–318

    Article  MATH  MathSciNet  Google Scholar 

  5. Eliasson L H, Grébert B, Kuksin S B. KAM for the nonlinear beam equation. Geom Funct Anal, 2016, 26: 1588–1715

    Article  MATH  MathSciNet  Google Scholar 

  6. Geng J, Xu X, You J. An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv Math, 2011, 226: 5361–5402

    Article  MATH  MathSciNet  Google Scholar 

  7. Geng J, You J. A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions. J Differential Equations, 2005, 209: 1–56

    Article  MATH  MathSciNet  Google Scholar 

  8. Geng J, You J. A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. Comm Math Phys, 2006, 262: 343–372

    Article  MATH  MathSciNet  Google Scholar 

  9. Kuksin S B, Pöschel J. Invariant Cantor manifolds of quasiperiodic oscillations for a nonlinear Schrödinger equation. Ann Math, 1996, 143: 149–179

    Article  MATH  MathSciNet  Google Scholar 

  10. Liang Z. Quasi-periodic solutions for 1D Schrödinger equation with the nonlinearity |u|2pu. J Differential Equations, 2008, 244: 2185–2225

    Article  MATH  MathSciNet  Google Scholar 

  11. Liang Z, You J. Quasi-periodic solutions for 1D Schrödinger equation with higher nonlinearity. SIAM J Math Anal, 2005, 36(2): 1965–1990

    Article  MATH  MathSciNet  Google Scholar 

  12. Pöschel J. Quasi-periodic solutions for a nonlinear wave equation. Comment Math Helv, 1996, 71: 269–296

    Article  MATH  MathSciNet  Google Scholar 

  13. Pöschel J. A KAM theorem for some nonlinear partial differential equations. Ann Sc Norm Super Pisa Cl Sci, 1996, 23: 119–148

    MATH  MathSciNet  Google Scholar 

  14. Procesi C, Procesi M. A KAM algorithm for the resonant non-linear Schrödinger equation. Adv Math, 2015, 272: 399–470

    Article  MATH  MathSciNet  Google Scholar 

  15. Shi Y, Xu J, Xu X. On quasi-periodic solutions for generalized Boussinesq equation with quadratic nonlinearity. J Math Phys, 2015, 56(2): 022703

    Article  MATH  MathSciNet  Google Scholar 

  16. Whitney H. Analytical extensions of differentiable functions defined on closed set. Trans Amer Math Soc, 1934, 36: 63–89

    Article  MATH  MathSciNet  Google Scholar 

  17. Wu J, Xu X. A KAM theorem for some partial differential equations in one dimension. Proc Amer Math Soc, 2016, 144(5): 2149–2160

    Article  MATH  MathSciNet  Google Scholar 

  18. Xu X, Geng J. KAM tori for higher dimensional beam equation with a fixed constant potential. Sci China Ser A, 2009, 52(9): 2007–2018

    Article  MATH  MathSciNet  Google Scholar 

  19. Yuan X. Quasi-periodic solutions of completely resonant nonlinear wave equations. J Differential Equations, 2006, 230: 213–274

    Article  MATH  MathSciNet  Google Scholar 

  20. Zakharov V E. Stability of periodic waves of finite amplitude on the surface of deep fluid. J Appl Mech Tech Phys, 1968, 2: 190–194

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xindong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X. Quasi-periodic solutions for class of Hamiltonian partial differential equations with fixed constant potential. Front. Math. China 13, 227–254 (2018). https://doi.org/10.1007/s11464-017-0667-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-017-0667-7

Keywords

MSC

Navigation