Skip to main content
Log in

Gauss-Bonnet-Chern mass and Alexandrov-Fenchel inequality

  • Survey Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

This is a survey about our recent works on the Gauss-Bonnet-Chern (GBC) mass for asymptotically flat and asymptotically hyperbolic manifolds. We first introduce the GBC mass, a higher order mass, for asymptotically flat and for asymptotically hyperbolic manifolds, respectively, by using a higher order scalar curvature. Then we prove its positivity and the Penrose inequality for graphical manifolds. One of the crucial steps in the proof of the Penrose inequality is the use of an Alexandrov-Fenchel inequality, which is a classical inequality in the Euclidean space. In the hyperbolic space, we have established this new Alexandrov-Fenchel inequality. We also have a similar work for asymptotically locally hyperbolic manifolds. At the end, we discuss the relation between the GBC mass and Chern’s magic form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson L, Cai M, Galloway G J. Rigidity and positivity of mass for asymptotically hyperbolic manifolds. Ann Henri Poincaré, 2008, 9(1): 1–33

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnowitt R, Deser S, Misner C W. Coordinate invariance and energy expressions in general relativity. Phys Rev (2), 1961, 122: 997–1006

    Article  MathSciNet  MATH  Google Scholar 

  3. Ashtekhar A, Hansen R O. A unified treatment of null and spatial infinity in general relativity, I. Universal structure, asymptotic symmetries and conserved quantities at spatial infinity. J Math Phys, 1978, 19: 1542–1566

    Article  MathSciNet  Google Scholar 

  4. Bartnik R. The mass of an asymptotically flat manifold. Comm Pure Appl Math, 1986, 34: 661–693

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonini V, Qing J. A positive mass theorem on asymptotically hyperbolic manifolds with corners along a hypersurface. Ann Henri Poincaré, 2008, 9(2): 347–372

    Article  MathSciNet  MATH  Google Scholar 

  6. Borisenko A A, Miquel V. Total curvatures of convex hypersurfaces in hyperbolic space. Illinois J Math, 1999, 43: 61–78

    MathSciNet  MATH  Google Scholar 

  7. Bray H L. Proof of the Riemannian Penrose inequality using the positive mass theorem. J Differential Geom, 2001, 59(2): 177–267

    MathSciNet  MATH  Google Scholar 

  8. Bray H L. On the positive mass, Penrose, and ZAS inequalities in general dimension. In: Surveys in Geometric Analysis and Relativity. Adv Lect Math, Vol 20. Beijing /Somerville: Higher Education Press/Int Press, 2011, 1–27

    Google Scholar 

  9. Bray H L, Lee D A. On the Riemannian Penrose inequality in dimensions less than eight. Duke Math J, 2009, 148(1): 81–106

    Article  MathSciNet  MATH  Google Scholar 

  10. Brendle S. Hypersurfaces of constant mean curvature in deSitter-Schwarzschild space. Publ Math Inst Hautes Études Sci, 2014, 117(1): 247–269

    Article  Google Scholar 

  11. Brendle S, Hung P -K, Wang M -T. A Minkowski-type inequality for hypersurfaces in the Anti-deSitter-Schwarzschild manifold. Comm Pure Appl Math, 2016, 69: 124–144

    Article  MathSciNet  MATH  Google Scholar 

  12. Caúla T, de Lima L L, Santos N L. Deformation and rigidity results for the 2k-Ricci tensor and the 2k-Gauss-Bonnet curvature. Math Nachr, 2013, 286(17-18): 1752–1777

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang S -Y A, Wang Y. On Aleksandrov-Fenchel inequalities for k-convex domains. Milan J Math, 2011, 79(1): 13–38

    Article  MathSciNet  MATH  Google Scholar 

  14. Cheng X, Zhou D. Rigidity for nearly umbilical hypersurfaces in space forms. J Geom Anal, 2014, 24(3): 1337–1345

    Article  MathSciNet  MATH  Google Scholar 

  15. Chern S S. A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds. Ann of Math (2), 1944, 45: 747–752

    Article  MathSciNet  MATH  Google Scholar 

  16. Chern S S. On the curvatura integra in a Riemannian manifold. Ann of Math (2), 1945, 46: 674–684

    Article  MathSciNet  MATH  Google Scholar 

  17. Chruściel P T. Boundary conditions at spatial infinity from a Hamiltonian point of view. In: Bergmann P, De Sabbata V, eds. Topological Properties and Global Structure of Space-time. New York: Plenum Press, 1986, 49–59

    Chapter  Google Scholar 

  18. Chruściel P T. A remark on the positive energy theorem. Classical Quantum Gravity, 1986, 3: L115–L121

    Article  MathSciNet  MATH  Google Scholar 

  19. Chruściel P T, Herzlich M. The mass of asymptotically hyperbolic Riemannian manifolds. Pacific J Math, 2003, 212(2): 231–264

    Article  MathSciNet  MATH  Google Scholar 

  20. Chruściel P T, Nagy G. The mass of spacelike hypersurface in asymptotically anti-de Sitter space-times. Adv Theor Math Phys, 2002, 5: 697–754, gr-qc/0110014

    Article  MATH  Google Scholar 

  21. Chruściel P T, Simon W. Towards the classification of static vacuum spacetimes with negative cosmological constant. J Math Phys, 2001, 42(4): 1779–1817

    Article  MathSciNet  MATH  Google Scholar 

  22. Crisóstomo J, Troncoso R, Zanelli J. Black hole scan. Phys Rev D (3), 2000, 62(8): 084013

    Article  MathSciNet  Google Scholar 

  23. Dahl M, Gicquaud R, Sakovich A. Penrose type inequalities for asymptotically hyperbolic graphs. Ann Henri Poincaré, 2012, DOI: 10.1007/s00023-012-0218-4

    Google Scholar 

  24. Dai X. A positive mass theorem for spaces with asymptotic SUSY compactification. Comm Math Phys, 2004, 244: 335–345

    Article  MathSciNet  MATH  Google Scholar 

  25. de Lima L L, Girão F. A Penrose inequality for asymptotically locally hyperbolic graphs. 2013, arXiv: 1304.7882

    Google Scholar 

  26. de Lima L L, Girão F. The ADM mass of asymptotically flat hypersurfaces. Trans Amer Math Soc, 2015, 367(9): 6247–6266

    Article  MathSciNet  MATH  Google Scholar 

  27. de Lima L L, Girão F. Positive mass and Penrose type inequalities for asymptotically hyperbolic hypersurfaces. Gen Relativity Gravitation, 2015, 47(3): Art 23 (20pp)

    Google Scholar 

  28. de Lima L L, Girão F. An Alexandrov-Fenchel-type inequality in hyperbolic space with an application to a Penrose inequality. Ann Henri Poincaré, 2015, DOI: 10.1007/s00023-015-0414-0

    Google Scholar 

  29. Deser S, Tekin B. Gravitational energy in quadratic-curvature gravities. Phys Rev Lett, 2002, 89: 101101

    Article  MathSciNet  MATH  Google Scholar 

  30. Deser S, Tekin B. Energy in generic higher curvature gravity theories. Phys Rev D, 2003, 75: 084032

    Article  MathSciNet  Google Scholar 

  31. Gallego E, Solanes G. Integral geometry and geometric inequalities in hyperbolic space. Differential Geom Appl, 2005, 22: 315–325

    Article  MathSciNet  MATH  Google Scholar 

  32. Ge Y, Wang G, Wu J. Hyperbolic Alexandrov-Fenchel quermassintegral inequalities I. 2013, arXiv: 1303.1714

    MATH  Google Scholar 

  33. Ge Y, Wang G, Wu J. A new mass for asymptotically flat manifolds. Adv Math, 2014, 266: 84–119

    Article  MathSciNet  MATH  Google Scholar 

  34. Ge Y, Wang G, Wu J. The Gauss-Bonnet-Chern mass of conformally flat manifolds. Int Math Res Not IMRN, 2014, 2014(17): 4855–4878

    MathSciNet  MATH  Google Scholar 

  35. Ge Y, Wang G, Wu J. Hyperbolic Alexandrov-Fenchel quermassintegral inequalities II. J Differential Geom, 2014, 98(2): 237–260

    MathSciNet  MATH  Google Scholar 

  36. Ge Y, Wang G, Wu J. The GBC mass for asymptotically hyperbolic manifolds (Announcement). C R Math Acad Sci Paris, 2014, 352(2): 147–151

    Article  MathSciNet  MATH  Google Scholar 

  37. Ge Y, Wang G, Wu J. The GBC mass for asymptotically hyperbolic manifolds. Math Z, 2015, 281: 257–297

    Article  MathSciNet  MATH  Google Scholar 

  38. Ge Y, Wang G, Wu J, Xia C. A Penrose inequality for graphs over Kottler space. Calc Var Partial Differential Equations, 2015, 52: 755–782

    Article  MathSciNet  MATH  Google Scholar 

  39. Gerhardt C. Inverse curvature flows in hyperbolic space. J Differential Geom, 2011, 89(3): 487–527

    MathSciNet  MATH  Google Scholar 

  40. Girao F, Mota A. The Gauss-Bonnet-Chern mass of higher codimension graphical manifolds. 2015, arXiv: 1509.00456

    Google Scholar 

  41. Guan P. Curvature measures, isoperimetric type inequalities and fully nonlinear PDES. Lecture Notes

  42. Guan P, Li J. The quermassintegral inequalities for k-convex starshaped domains. Adv Math, 2009, 221: 1725–1732

    Article  MathSciNet  MATH  Google Scholar 

  43. Herzlich M. Mass formulae for asymptotically hyperbolic manifolds. In: AdS/CFT Correspondence: Einstein Metrics and Their Conformal Boundaries. Zürich: Eur Math Soc, 2005, 103–121

    Chapter  Google Scholar 

  44. Herzlich M. Computing asymptotic invariants with the Ricci tensor on asymptotically flat and hyperbolic manifolds. 2015, arXiv: 1503.00508

    Google Scholar 

  45. Huang L -H. On the center of mass of isolated systems with general asymptotics. Classical Quantum Gravity, 2009, 26(1): 015012 (25pp)

    Article  MathSciNet  MATH  Google Scholar 

  46. Huang L -H, Wu D. The equality case of the Penrose inequality for asymptotically flat graphs. Trans Amer Math Soc, 2015, 367(1): 31–47

    Article  MathSciNet  MATH  Google Scholar 

  47. Huisken G. In preparation. See also [42]

  48. Huisken G, Ilmanen T. The inverse mean curvature flow and the Riemannian Penrose inequality. J Differential Geom, 2001, 59: 353–437

    MathSciNet  MATH  Google Scholar 

  49. Jauregui J. Penrose-type inequalities with a Euclidean background. 2011, arXiv: 1108.4042

    Google Scholar 

  50. Labbi M L. On (2k)-minimal submanifolds. Results Math, 2008, 52: 323–338

    Article  MathSciNet  MATH  Google Scholar 

  51. Lam M -K G. The graph cases of the Riemannian positive mass and Penrose inequality in all dimensions. 2010, arXiv.org/1010.4256

    Google Scholar 

  52. Lanczos C. A remarkable property of the Riemann-Christoffel tensor in four dimensions. Ann of Math (2), 1938, 39(4): 842–850

    Article  MathSciNet  MATH  Google Scholar 

  53. Lee D, Neves A. A static uniqueness theorem for higher genus Kottler metrics. slides of a talk delivered at Tsinghua Sanya International Mathematical Forum

  54. Li H, Wei Y, Xiong C. A geometric inequality on hypersurface in hyperbolic space. Adv Math, 2014, 253: 152–162

    Article  MathSciNet  MATH  Google Scholar 

  55. Li H, Wei Y, Xiong C. The Gauss-Bonnet-Chern mass for graphic manifolds. Ann Global Anal Geom, 2014, 45(4): 251–266

    Article  MathSciNet  MATH  Google Scholar 

  56. Li Y, Nguyen L. A generalized mass involving higher order symmetric function of the curvature tensor. Ann Henri Poincaré, 2013, 14(7): 1733–1746

    Article  MathSciNet  MATH  Google Scholar 

  57. Lohkamp J. The higher dimensional Positive Mass Theorem I. arXiv: 0608795

  58. Lovelock D. The Einstein tensor and its generalizations. J Math Phys, 1971, 12: 498–501

    Article  MathSciNet  MATH  Google Scholar 

  59. Mars M. Topical review: present status of the Penrose inequality. Classical Quantum Gravity, 2009, 26(19): 193001

    Article  MathSciNet  MATH  Google Scholar 

  60. Miao P. Positive mass theorem on manifolds admitting corners along a hypersurface. Adv Theor Math Phys, 2002, 6(6): 1163–1182

    Article  MathSciNet  Google Scholar 

  61. Miao P, Tam L -F. Evaluation of the ADM mass and center of mass via the Ricci tensor. Proc Amer Math Soc, 2016, 144: 753–761

    Article  MathSciNet  MATH  Google Scholar 

  62. Michel B. Geometric invariance of mass-like asymptotic invariants. J Math Phys, 2011, 52: 052504

    Article  MathSciNet  MATH  Google Scholar 

  63. Neves A. Insufficient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds. J Differential Geom, 2010, 84: 191–229

    MathSciNet  MATH  Google Scholar 

  64. Parker T, Taubes C. On Witten’s proof of the positive energy theorem. Comm Math Phys, 1982, 84: 223–238

    Article  MathSciNet  MATH  Google Scholar 

  65. Patterson E M. A class of critical Riemannian metrics. J Lond Math Soc (2), 1981, 23(2): 349–358

    Article  MathSciNet  MATH  Google Scholar 

  66. Rivin I, Jean-Marc Schlenker. On the Schlafli differential formula. arXiv: math/0001176

  67. Schmidt E. Die isoperimetrischen Ungleichungen auf der gewöhnlichen Kugel und für Rotationskörper im n-dimensionalen sphärischen Raum. Math Z, 1940, 46: 743–794

    Article  MathSciNet  MATH  Google Scholar 

  68. Schoen R. Talk at the Simons Center for Geometry and Physics. November, 2009

    Google Scholar 

  69. Schoen R, Yau S T. On the proof of the positive mass conjecture in general relativity. Comm Math Phys, 1979, 65: 45–76

    Article  MathSciNet  MATH  Google Scholar 

  70. Shi Y, Tam T -F. Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature. J Differential Geom, 2002, 62: 79–125

    MathSciNet  MATH  Google Scholar 

  71. Wang G, Wu J. Chern’s magic form and the Gauss-Bonnet-Chern mass. 2015, arXiv: 1510.03036

    Google Scholar 

  72. Wang G, Xia C. Isoperimetric type problems and Alexandrov-Fenchel type inequalities in the hyperbolic space. Adv Math, 2014, 259: 532–556

    Article  MathSciNet  MATH  Google Scholar 

  73. Wang X. Mass for asymptotically hyperbolic manifolds. J Differential Geom, 2001, 57: 273–299

    MathSciNet  MATH  Google Scholar 

  74. Willa A. Dimensionsabhängige Relationen für den Krümmungstensor und neue Klassen von Einstein-und Spuereinsteinräumen. Diss ETH Nr, 14026

  75. Witten E. A new proof of the positive energy theorem. Comm Math Phys, 1981, 80: 381–402

    Article  MathSciNet  MATH  Google Scholar 

  76. Zhang W. Lectures on Chern-Weil Theory and Witten Deformations. Nankai Tracts in Mathematics, Vol 4. River Edge: World Scientific Publishing Co, Inc, 2001

    Google Scholar 

  77. Zhang X. A definition of total energy-momenta and the positive mass theorem on asymptotically hyperbolic 3-manifolds. I. Comm Math Phys, 2004, 249(3): 529–548

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Wang, G., Wu, J. et al. Gauss-Bonnet-Chern mass and Alexandrov-Fenchel inequality. Front. Math. China 11, 1207–1237 (2016). https://doi.org/10.1007/s11464-016-0558-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-016-0558-3

Keywords

MSC

Navigation