Skip to main content
Log in

A Positive Mass Theorem for Spaces with Asymptotic SUSY Compactification

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove a positive mass theorem for spaces which asymptotically approach a flat Euclidean space times a Calabi-Yau manifold (or any special honolomy manifold except the quaternionic Kähler). This is motivated by the very recent work of Hertog-Horowitz-Maeda [HHM].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, L., Dahl, M.: Scalar curvature rigidity for asymptotically locally hyperbolic manifolds. Ann. Glob. Anal. Geom. 16, 1–27 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnowitt, S., Deser, S., Misner, C.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. 122, 997–1006 (1961)

    Article  MATH  Google Scholar 

  3. Ashtekar, A., Hansen, R.: A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity. J. Math. Phys. 19, 1542–1566 (1978)

    Google Scholar 

  4. Ashtekar, A., Horowitz, G.: Energy-momentum of isolated systems cannot be null. Phys. Lett. 89A, 181–184 (1982)

    MathSciNet  Google Scholar 

  5. Bartnik, R.: The mass of an asymptotically flat manifold. Comm. Pure Appl. Math. 36, 661–693 (1986)

    MathSciNet  Google Scholar 

  6. Bartnik, R.: Quasi-spherical metrics and prescribed scalar curvature. J. Diff. Geom. 37, 31–71 (1993)

    MathSciNet  MATH  Google Scholar 

  7. Brill, D., Pfister, H.: States Of Negative Total Energy In Kaluza-Klein Theory. Phys. Lett. B 228, 359 (1989)

    Article  MathSciNet  Google Scholar 

  8. Brill, D., Horowitz, G.T.: Negative Energy In String Theory. Phys. Lett. B 262, 437 (1991)

    Article  MathSciNet  Google Scholar 

  9. Cheeger, J., Gromoll, D.: The splitting theorem for manifolds of non-negative Ricci curvature. J. Diff. Geom. 6, 119–128 (1971)

    MATH  Google Scholar 

  10. Candelas, P., Horowitz, G., Strominger, A., Witten, E.: Vacuum configurations for superstrings. Nucl. Phys. B258, 46 (1985)

  11. Chruściel, P.: Boundary conditions at spatial infinity from a Hamiltonian point of view. In: Topological Properties and Global Structure of Space-Time (Erice, 1985), NATO, Adv. Sci. Inst. Ser. B: Phys. 138, New York: Plenum, 1986, pp. 49–59

  12. Gibbons, G., Hawking, S., Horowitz, G., Perry, M.: Positive mass theorems for black holes. Commun. Math. Phys. 88, 295–308 (1983)

    MathSciNet  Google Scholar 

  13. Hausel, T., Hunsicker, E., Mazzeo, R.: Hodge cohomlogy of gravitational instantons. To appear in Duke Math J.

  14. Hertog, T., Horowitz, G., Maeda, K.: Negative energy density in Calabi-Yau compactifica- tions. hep-th/0304199

  15. Herzlich, M.: The positive mass theorem for black holes revisited. J. Geom. Phys. 26, 97–111 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Horowitz, G., Myers, R.: The AdS/CFT correspondence and a new positive energy conjecture for general relativity. Phys. Rev. D59, 026005 (1999)

  17. Horowitz, G., Perry, M.: Gravitational energy cannot become negative. Phys. Rev. Lett. 48, 371–374 (1982)

    Article  MathSciNet  Google Scholar 

  18. Horowitz, G., Tod, P.: A relation between local and total energy in general relativity. Commun. Math. Phys. 85, 429–447 (1982)

    MathSciNet  MATH  Google Scholar 

  19. Lawson, H., Michelsohn, M.: Spin Geometry. Princeton Math. Series, Vol. 38, Princeton, NJ: Princeton University Press, 1989

  20. Lee, J., Parker, T.: The Yamabe problem. Bull. Am. Math. Soc. 17, 31–81 (1987)

    Google Scholar 

  21. Mazzeo, R., Melrose, R.: Pseudodifferential operators on manifolds with fibered boundaries. Asian J. Math. 2, 833–866 (1998)

    MathSciNet  MATH  Google Scholar 

  22. Parker, T., Taubes, C.: On Witten’s proof of the positive energy theorem. Commun. Math. Phys. 84, 223–238 (1982)

    MathSciNet  MATH  Google Scholar 

  23. Penrose, R.: Some unsolved problems in classical general relativity. In: Seminar on Differential Geometry, S.-T. Yau, (ed.), Annals of Math. Stud. 102, Princeton, NJ: Princeton Univ. Press, 1982, pp. 631–668

  24. Regge, T., Teitelboim, C.: Role of surface integrals in the Hamiltonian formulation of general relativity. Ann. Phys. 88, 286–318 (1974)

    MATH  Google Scholar 

  25. Stolz, S.: Simply Connected Manifolds of Positive Scalar Curvature. Bull. Am. Math. Soc. 23, 427 (1990)

    MathSciNet  MATH  Google Scholar 

  26. Stolz, S.: Simply connected manifolds of positive scalar curvature. Ann. of Math. (2) 136(3), 511–540 (1992)

    Google Scholar 

  27. Schoen, R., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45–76 (1979)

    MathSciNet  MATH  Google Scholar 

  28. Schoen, R., Yau, S.-T.: The energy and the linear momentum of spacetimes in general relativity. Commun. Math. Phys. 79, 47–51 (1981)

    MathSciNet  MATH  Google Scholar 

  29. Schoen, R., Yau, S.-T.: Proof of the positive mass theorem. II. Commun. Math. Phys. 79, 231–260 (1981)

    MATH  Google Scholar 

  30. Vaillant, B.: Index and spectral theory for manifolds with generalized fibered cusps. Preprint, math.DG/0102072

  31. Wang, M.: Parallel spinors and parallel forms. Ann. Global Anal. Geom. 7(1), 59–68 (1989)

    MATH  Google Scholar 

  32. Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)

    MathSciNet  MATH  Google Scholar 

  33. Witten, E.: Instability Of The Kaluza-Klein Vacuum. Nucl. Phys. B 195, 481 (1982)

    Article  MATH  Google Scholar 

  34. York, J.: Energy and momentum of the gravitational field. In: Essays in General Relativity, F.J. Tipler, (ed.), New York: Academic Press, 1980

  35. Zhang, X.: Angular momentum and positive mass theorem. Commun. Math. Phys. 206, 137–155 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianzhe Dai.

Additional information

Communicated by G. W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, X. A Positive Mass Theorem for Spaces with Asymptotic SUSY Compactification. Commun. Math. Phys. 244, 335–345 (2004). https://doi.org/10.1007/s00220-003-0986-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-003-0986-2

Keywords

Navigation