Skip to main content
Log in

A binary packing material-based method for estimating small-strain shear modulus of sandy soils

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

A set of creative formulation is introduced to estimating the small-strain shear modulus (Gmax) of various sandy soils through the measurement of well-controlled laboratory tests combined with the analysis of experimental data published in the literature. The influences of normalized effective confining pressure (\(\sigma^{\prime}_{{{\text{c0}}}}\)/Pa), void ratio (e), and fines contents (FC) on the values of Gmax are revealed through a series of bender element measurements. Through introducing the equivalent skeleton void ratio (\(e_{{{\text{sk}}}}^{*}\)) to describe the intergranular contact state of sandy soils with FC less than a threshold value (FCth), a remarkable finding is that the stress exponent n, characterizing the increase rate of Gmax with increasing \(\sigma^{\prime}_{{{\text{c0}}}}\), is a soil-specific constant and a linear function of the synthesizing material parameter (\(C_{{\text{u}}}^{{\text{s}}} C_{{\text{u}}}^{{\text{f}}}\)) in log-scale. Another remarkable finding is that a virtually unique form of the correlation between Gmax/(\(\sigma^{\prime}_{{{\text{c0}}}}\)/Pa)n and \(e_{{{\text{sk}}}}^{*}\) exists. An unified form of the binary packing material-based Gmax prediction formulation for different types of sandy soils is established. The three coefficients of the proposed Gmax expression in form of explicit equations can be simply determined using some basic index properties of clean sand and pure fines. In this regard, the proposed Gmax prediction formulation provides a significant advantage in the determination of Gmax and associated shear wave velocity Vs of sandy soils in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data are available on request from author Qi Wu.

References

  1. ASTM (2011) Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM D2487. ASTM, West Conshohocken

  2. ASTM (2011) Standard Test Method for Particle-Size Analysis of Soils. ASTM D422. ASTM, West Conshohocken

  3. ASTM (2011) Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854. ASTM, West Conshohocken

  4. ASTM (2011) Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM D4253. ASTM, West Conshohocken

  5. ASTM (2011) Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM D4254. ASTM, West Conshohocken

  6. Andrus RD, Stokoe IIKH (2000) Liquefaction resistance of soils from shear-wave velocity. J Geotech Geoenviron Eng 126(11):1015–1025. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(1015)

    Article  Google Scholar 

  7. Barnett N, Rahman MM, Karim MR, Nguyen HBK, Carraro JAH (2020) Equivalent state theory for mixtures of sand with non-plastic fines: a DEM investigation. Géotechnique. https://doi.org/10.1680/jgeot.19.p.103

    Article  Google Scholar 

  8. Baxter CDP, Bradshaw AS, Green RA, Wang JH (2008) Correlation between cyclic resistance and shear-wave velocity for providence silts. J Geotech Geoenviron Eng 134(1):37–46. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(37)

    Article  Google Scholar 

  9. Been K, Jefferies MG (1985) A state parameter for sands. Géotechnique 35(2):99–102. https://doi.org/10.1680/geot.1985.35.2.99

    Article  Google Scholar 

  10. Belkhatir M, Schanz T, Arab A (2013) Effect of fines content and void ratio on the saturated hydraulic conductivity and undrained shear strength of sand-silt mixtures. Environ Earth Sci 70(6):137–151. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000177

    Article  Google Scholar 

  11. Cai G, Liu S, Tong L (2010) Field evaluation of deformation characteristics of a lacustrine clay deposit using seismic piezocone tests. Eng Geol 116(3–4):251–260. https://doi.org/10.1016/j.enggeo.2010.09.006

    Article  Google Scholar 

  12. Cai G, Puppala AJ, Liu S (2014) Characterization on the correlation between shear wave velocity and piezocone tip resistance of Jiangsu clays. Eng Geol 171:96–103. https://doi.org/10.1016/j.enggeo.2013.12.012

    Article  Google Scholar 

  13. Chang WJ, Chang CW, Zeng JK (2014) Liquefaction characteristics of gap-graded gravelly soils in K0 condition. Soil Dyn Earthq Eng 56:74–85. https://doi.org/10.1016/j.soildyn.2013.10.005

    Article  Google Scholar 

  14. Chen YL, Zhang YN (2016) Experimental study of effects of non-plastic fines on liquefaction properties of saturated sand. Rock Soil Mech 37(2):507–516. https://doi.org/10.16285/j.rsm.2016.02.024. (in Chinese)

    Article  Google Scholar 

  15. Chen GX, Zhou ZL, Pan H, Tian S, Li XJ (2016) The influence of undrained cyclic loading patterns and consolidation states on the deformation features of saturated fine sand over a wide strain range. Eng Geol 204:77–93. https://doi.org/10.1016/j.enggeo.2016.02.008

    Article  Google Scholar 

  16. Chen GX, Kong MY, Khoshnevisan S, Chen WY, Li XJ (2019) Calibration of Vs-based empirical models for assessing soil liquefaction potential using expanded database. Bull Eng Geol Environ 78(2):945–957. https://doi.org/10.1007/s10064-017-1146-9

    Article  Google Scholar 

  17. Chen GX, Zhao DF, Chen WY, Juang CH (2019) Excess pore water pressure generation in cyclic undrained testing. J Geotech Geoenviron Eng 145(7):04019022. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002057

    Article  Google Scholar 

  18. Chen GX, Wu Q, Zhao K, Shen ZF, Yang J (2020) A binary packing material-based procedure for evaluating soil liquefaction triggering during earthquakes. J Geotech Geoenviron Eng. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002263

    Article  Google Scholar 

  19. Chen GX, Wu Q, Zhou ZL, Ma WJ, Chen WY, Sara K, Yang J (2020) Undrained anisotropy and cyclic resistance of saturated silt subjected to various patterns of principal stress rotation. Géotechnique 70(4):317–331. https://doi.org/10.1680/jgeot.18.p.180

    Article  Google Scholar 

  20. Chien LK, Oh YN (2002) Influence of fines content and initial shear stress on dynamic properties of hydraulic reclaimed soil. Can Geotech J 39(1):242–253. https://doi.org/10.1139/t01-082

    Article  Google Scholar 

  21. Choo H, Burns SE (2015) Shear wave velocity of granular mixtures of silica particles as a function of finer fraction, size ratios and void ratios. Granul Matter 17(5):567–578. https://doi.org/10.1007/s10035-015-0580-2

    Article  Google Scholar 

  22. Dash HK, Sitharam TG (2009) Undrained cyclic pore pressure response of sand–silt mixtures: effect of nonplastic fines and other parameters. Geotech Geol Eng 27(4):501–517. https://doi.org/10.1007/s10706-009-9252-5

    Article  Google Scholar 

  23. Gong J, Wang X, Li L, Nie ZH (2019) DEM study of the effect of fines content on the small-strain stiffness of gap-graded soils. Comput Geotech 112:35–40. https://doi.org/10.1016/j.compgeo.2019.04.008

    Article  Google Scholar 

  24. Goudarzy M, Rahman MM, Konig D, Schanz T (2016) Influence of non-plastic fines content on maximum shear modulus of granular materials. Soils Found 56(6):973–983. https://doi.org/10.1016/j.sandf.2016.11.003

    Article  Google Scholar 

  25. Goudarzy M, Rahemi N, Rahman MM, Schanz T (2017) Predicting the maximum shear modulus of sands containing nonplastic fines. J Geotech Geoenviron Eng 143(9):06017013. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001982

    Article  Google Scholar 

  26. Gu XQ, Yang J, Huang M, S., Gao G., Y. (2015) Measurement of elastic parameters of dry sand using bender-extender element. Rock and Soil Mechanics 36(Suppl. 1):220–224

    Google Scholar 

  27. Hardin BO, Richart FE (1963) Elastic wave velocities in granular soils. J Soil Mech Found Div 89(SM1):39–56

    Google Scholar 

  28. Hardin BO, Black WL (1966) Sand stiffness under various triaxial stresses. J Soil Mech Found Div 92(SM2):27–42

    Article  Google Scholar 

  29. Hardin BO, Drnevich VP (1972) Shear modulus and damping in soil: design equation and curves. J Soil Mech Found Div 98(7):667–692

    Article  Google Scholar 

  30. Hsiao DH, Phan VTA, Hsieh YT, Kuo HY (2015) Engineering behavior and correlated parameters from obtained results of sand–silt mixtures. Soil Dyn Earthq Eng 77(5):137–151. https://doi.org/10.1016/j.soildyn.2015.05.005

    Article  Google Scholar 

  31. Huang YT, Huang AB, Kuo YC, Tsai MD (2004) A laboratory study on the undrained strength of a silty sand from Central Western Taiwan. Soil Dyn Earthq Eng 24:733–743. https://doi.org/10.1016/j.soildyn.2004.06.013

    Article  Google Scholar 

  32. Ishihara K (1996) Soil behavior in earthquake geotechnics. Clarendon Press, Oxford

    Book  Google Scholar 

  33. Iwasaki T, Tatsuoka F (1977) Effect of grain size and grading on dynamic shear moduli of sand. Soils Found 17(3):19–35. https://doi.org/10.3208/sandf1972.17.3_19

    Article  Google Scholar 

  34. Jamiolkowski M, Lancellotta R, Lo Presti DCF (1995) Remarks on the stiffness at small strains of six Italian clays. In: Proceedings of the pre-failure deformation of geomaterials: the International Symposium, A.A. Balkema, Aapporo, Japan, pp 817–836

  35. Jiang JW, Tao R, El Naggar MH, Liu H, Du XL (2024) Seismic performance and vulnerability analysis for bifurcated tunnels in soft soil. Comput Geotech 167:106065. https://doi.org/10.1016/j.compgeo.2024.106065

    Article  Google Scholar 

  36. Karim ME, Alam MJ (2016) Undrained monotonic and cyclic response of sand–silt mixtures. Int J Geotech Eng 10(3):223–235. https://doi.org/10.1179/1939787915Y.0000000023

    Article  Google Scholar 

  37. Ladd RS (1978) Preparing specimens using undercompaction. Geotech Test J 1(1):16–23. https://doi.org/10.1520/gtj10364j

    Article  Google Scholar 

  38. Lade PV, Yamamuro JA (1997) Effects of nonplastic fines on static liquefaction of sands. Can Geotech J 34(6):918–928. https://doi.org/10.1139/cgj-34-6-918

    Article  Google Scholar 

  39. Lashkari A (2014) Recommendations for extension and re-calibration of an existing sand constitutive model taking into account varying non-plastic fines content. Soil Dyn Earthq Eng 61–62:212–238. https://doi.org/10.1016/j.soildyn.2014.02.012

    Article  Google Scholar 

  40. Lashkaripour GR, Ajalloeian R (2003) Determination of silica sand stiffness. Eng Geol 68(3):225–236. https://doi.org/10.1016/S0013-7952(02)00229-6

    Article  Google Scholar 

  41. Lee JS, Santamarina JC (2005) Bender elements: performance and signal interpretation. J Geotech Geoenviron Eng 131(9):1063–1070. https://doi.org/10.1061/(asce)1090-0241(2005)131:9(1063)

    Article  Google Scholar 

  42. Liu X, Zhang N, Lan H (2019) Effects of sand and water contents on the small-strain shear modulus of loess. Eng Geol 2019(260):105202. https://doi.org/10.1016/j.enggeo.2019.105202

    Article  Google Scholar 

  43. Liang K, Chen G, Du X, Xu C, Yang J (2023) A unified formula for small-strain shear modulus of sandy soils based on extreme void ratios. J Geotech Geoenviron Eng 149(2):04022127. https://doi.org/10.1061/JGGEFK.GTENG-10913

    Article  Google Scholar 

  44. Mohammadi A, Qadimi A (2015) A simple critical state approach to predicting the cyclic and monotonic response of sands with different fines contents using the equivalent intergranular void ratio. Acta Geotech 10(5):587–606. https://doi.org/10.1007/s11440-014-0318-z

    Article  Google Scholar 

  45. Naeini SA, Baziar MH (2004) Effect of fines content on steady-state strength of mixed and layered sampled of sand. Soil Dyn Earthq Eng 24(3):181–187. https://doi.org/10.1016/j.soildyn.2003.11.003

    Article  Google Scholar 

  46. Ni Q, Tan TS, Dasari GR, Hight DW (2004) Contribution of fines to the compressive strength of mixed soils. Geotechnique 54(9):561–569. https://doi.org/10.1680/geot.2004.54.9.561

    Article  Google Scholar 

  47. Ni Q, Tan TS, Dasari GR, Hight DW (2005) Discussion: contribution of fines to the compressive strength of mixed soils. Geotechnique 55(8):627–628. https://doi.org/10.1680/geot.2005.55.8.627

    Article  Google Scholar 

  48. Oka LG, Dewoolkar M, Olson SM (2018) Comparing laboratory-based liquefaction resistance of a sand with non-plastic fines with shear wave velocity-based field case histories. Soil Dyn Earthq Eng 113:162–173. https://doi.org/10.1016/j.soildyn.2018.05.028

    Article  Google Scholar 

  49. Omar MN, Abbiss CP, Taha MR, Nayan KA (2011) Prediction of long-term settlement on soft clay using shear wave velocity and damping characteristics. Eng Geol 123(4):259–270. https://doi.org/10.1016/j.enggeo.2011.06.004

    Article  Google Scholar 

  50. Papadopoulou A, Tika T (2008) The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands. Soils Found 48(5):713–725. https://doi.org/10.3208/sandf.48.713

    Article  Google Scholar 

  51. Payan M, Khoshghalb A, Senetakis K, Khalili N (2016) Effect of particle shape and validity of Gmax models for sand: a critical review and a new expression. Comput Geotech 72:28–41. https://doi.org/10.1016/j.compgeo.2015.11.003

    Article  Google Scholar 

  52. Payan M, Senetakis K, Khoshghalb A, Khalili N (2017) Characterization of the small-strain dynamic behavior of silty sands; contribution of silica non-plastic fines content. Soil Dyn Earthq Eng 102:232–240. https://doi.org/10.1016/j.soildyn.2017.08.008

    Article  Google Scholar 

  53. Polito CP (1999) The effects of non-plastic and plastic fines on the liquefaction of sandy soils. Ph.d. Thesis, Department of Civil Engineering, Virginia Polytechnic Institute and State University, Virginia, USA

  54. Polito CP, Martin JR II (2001) Effects of nonplastic fines on the liquefaction resistance of sands. J Geotech Geoenviron Eng 127(5):408–415. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(408)

    Article  Google Scholar 

  55. Prakasha KS, Chandrasekaran VS (2005) Behavior of marine sand-clay mixtures under static and cyclic triaxial shear. J Geotech Geoenviron Eng 131(2):213–222. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(213)

    Article  Google Scholar 

  56. Rahman MM, Lo SR (2008) The prediction of equivalent granular steady state line of loose sand with fines. Geomech Geoengin Int J 3(3):179–190. https://doi.org/10.1080/17486020802206867

    Article  Google Scholar 

  57. Rahman MM, Lo SR, Gnanendran CT (2008) On equivalent granular void ratio and steady state behavior of loose sand with fines. Can Geotech J 45(10):1439–1455. https://doi.org/10.1139/T08-064

    Article  Google Scholar 

  58. Rahman MM, Lo SR, Baki MAL (2011) Equivalent granular state parameter and undrained behavior of sand–fines mixtures. Acta Geotech 6(4):183–194. https://doi.org/10.1007/s11440-011-0145-4

    Article  Google Scholar 

  59. Rahman MM, Cubrinovski M, Lo SR (2012) Initial shear modulus of sandy soils and equivalent granular void ratio. Geomech Geoengin 7(3):219–226. https://doi.org/10.1080/17486025.2011.616935

    Article  Google Scholar 

  60. Randolph MF, Dolwin J, Beck R (1994) Design of driven piles in sand. Geotechnique 44(3):427–448. https://doi.org/10.1680/geot.1994.44.3.427

    Article  Google Scholar 

  61. Skempton AW (1954) The pore-pressure coefficients A and B. Geotechnique 4(4):143–147. https://doi.org/10.1680/geot.1954.4.4.143

    Article  Google Scholar 

  62. Sahaphol T, Miura S (2005) Shear moduli of volcanic soils. Soil Dyn Earthq Eng 25:157–165. https://doi.org/10.1016/j.soildyn.2004.10.001

    Article  Google Scholar 

  63. Salgado R, Bandini P, Karim A (2000) Shear strength and stiffness of silty sand. J Geotech Geoenviron Eng 126(5):451–462. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(451)

    Article  Google Scholar 

  64. Seed HB, Wong RT, Idriss IM, Tokimatsu K (1986) Moduli and damping factors for dynamic analyzes of cohesionless soil. J Geotech Eng 112(11):1016–1032. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1016)

    Article  Google Scholar 

  65. Tao M, Figueroa JL, Saada AS (2004) Influence of nonplastic fines content on the liquefaction resistance of soil in terms of the unit energy In: Proceedings of the cyclic behavior of soils and liquefaction phenemena. A.A. Balkema Publishers Bochum, Germany, pp 223–231

  66. Thevanayagam S (1998) Effect of fines and confining stress on undrained shear strength of silty sands. J Geotech Geoenviron Eng 124(6):479–491. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(479)

    Article  Google Scholar 

  67. Thevanayagam S (2000) Liquefaction potential and undrained fragility of silty sands. In: Proceedings of the 12th world conference earthquake engineering CD-ROM, New Zealand Society for Earthquake Engineering, Wellington, New Zealand

  68. Thevanayagam S (2003) Role of intergranular contacts on mechanisms causing liquefaction and slope failures in silty sands. Final Report. USGS Award No. 01HQGR0032 and 99HQGR0021, US Geological Survey, Department of Interior, USA

  69. Thevanayagam S, Liang J (2001) Shear wave velocity relations for silty and gravely soils. In: Proceedings of the 4th international conference on soil dynamics and earthquake engineering, San Diego

  70. Thevanayagam S, Martin GR (2002) Liquefaction in silty soils-screening and remediation issue. Soil Dyn Earthq Eng 22(9–12):1035–1042. https://doi.org/10.1016/S0267-7261(02)00128-8

    Article  Google Scholar 

  71. Thevanayagam S, Shenthan T, Mohan S, Liang J (2002) Undrained fragility of clean sands, silty sands, and sandy silts. J Geotech Geoenviron Eng 128(10):849–859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849)

    Article  Google Scholar 

  72. Wichtmann T, Hernandez M, Triantafyllidis T (2015) On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand. Soil Dyn Earthq Eng 69:103–114. https://doi.org/10.1016/j.soildyn.2014.10.017

    Article  Google Scholar 

  73. Wu Q, Zhu EC, Xiao X, Li YX, Chen GX (2024) Cyclic resistance evaluation of marine clay based on CPTu data: a case study of Shaba Wind Farm. Front. Mar. Sci. 10:1300005. https://doi.org/10.3389/fmars.2023.1300005

    Article  Google Scholar 

  74. Xenaki VC, Athanasopoulos GA (2003) Liquefaction resistance of sand–silt mixtures: an experimental investigation of the effect of fines. Soil Dyn Earthq Eng 23(3):1–12. https://doi.org/10.1016/S0267-7261(02)00210-5

    Article  Google Scholar 

  75. Yang J, Yan XR (2009) Site response to multi-directional earthquake loading: a practical procedure. Soil Dyn Earthq Eng 29(4):710–721. https://doi.org/10.1016/j.soildyn.2008.07.008

    Article  Google Scholar 

  76. Yang J, Wei LM (2012) Collapse of loose sand with the addition of fines: the role of particle shape. Géotechnique 62(12):1111–1125. https://doi.org/10.1680/geot.11.P.062

    Article  Google Scholar 

  77. Yang J, Gu XQ (2013) Shear stiffness of granular material at small-strain: does it depend on grain size? Géotechnique 63(2):165–179. https://doi.org/10.1680/geot.11.P.083

    Article  Google Scholar 

  78. Yang J, Liu X (2016) Shear wave velocity and stiffness of sand: the role of non-plastic fines. Géotechnique 66(6):1–15. https://doi.org/10.1680/jgeot.16.d.006

    Article  Google Scholar 

  79. Yang SL, Lacasse S, Sandven RF (2006) Determination of the transitional fines content of mixtures of sand and non-plastic fines. Geotech Test J 29(2):102–107. https://doi.org/10.1016/j.sandf.2014.12.017

    Article  Google Scholar 

  80. Yilmaz Y (2009) A study on the limit void ratio characteristics of medium to fine mixed graded sands. Eng Geol 104(3–4):290–294

    Article  Google Scholar 

  81. Yoo JK, Park D, Baxter CDP (2018) Estimation of drained shear strength of granular soil from shear wave velocity and confining stress. J Geotech Geoenviron Eng 144(6):04018027. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001876

    Article  Google Scholar 

  82. Youn JU, Choo YW, Kim DS (2008) Measurement of small-strain shear modulus G max, of dry and saturated sands by bender element, resonant column, and torsional shear tests. Can Geotech J 45(10):1426–1438

    Article  Google Scholar 

  83. Zhou YG, Xia P, Ling DS, Chen YM (2020) Liquefaction case studies of gravelly soils during the 2008 Wenchuan earthquake. Eng Geol 274:105691. https://doi.org/10.1016/j.enggeo.2020.105691

    Article  Google Scholar 

  84. Zhu JQ, Kong LW, Gao WH, Li XW (2015) Multi-ways to identify the transitional fine content of cohesionless soil with fines. J Hydraul Eng 46(9):1103–1109. https://doi.org/10.13243/j.cnki.slxb.20141409

    Article  Google Scholar 

  85. Zhuang HY, Wang R, Chen GX, Miao Y, Zhao K (2018) Shear modulus reduction of saturated sand under large liquefaction-induced deformation in cyclic torsional shear tests. Eng Geol 240:110–122. https://doi.org/10.1016/j.enggeo.2018.04.018

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under grant numbers 52008206, the China Postdoctoral Science Foundation under grant number 2021M690279, and Postgraduate Research & Practice Innovation Program of Jiangsu Province under grant number KYCX23_1462.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxing Chen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

The authors state that the research was conducted according to ethical standards.

Consent to participate

The authors agreed to participate in this study.

Consent for publication

This paper has not been published before and is not under consideration for publication elsewhere. All co-authors approved its publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Hang, T., Jiang, J. et al. A binary packing material-based method for estimating small-strain shear modulus of sandy soils. Acta Geotech. (2024). https://doi.org/10.1007/s11440-023-02196-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11440-023-02196-6

Keywords

Navigation