Skip to main content
Log in

Clay minerals separation in soft rock driven by the liquid bridge force during water–rock interaction

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Mineral change and micropore development are important deterioration features of soft rock during water–rock interaction, but ignoring the differences and contributions of potential physical and chemical processes in existing laboratory studies. This paper carried out multiple micro-measurements on mudstone and sandstone after powder immersion and wetting–drying cycles of coarse grains, and proposed a liquid bridge model to distinguish the potential microscale process. The results indicate a complementary relation of mineral composition in the sieved fine particles, increasing clay minerals, and decreasing detrital minerals and cement with wetting–drying cycles. The variation in mineral and ion is slight after 320 days immersion. Micropores develop along mudstone boundaries after the wetting–drying cycle, and fewer clay minerals are found in sandstone whose skeleton of detrital minerals remain undamaged. The repeating liquid bridge force, varied in direction and magnitude, softens the cement strength inter minerals and induces them detaching from rock skeleton and remaining micropores. Combining with the weak chemical action, the rock damage evolution driven by the liquid bridge force helps us clarify the specific microscale processes involved in a short period of water–rock interaction, on the mechanism responsible for desiccation cracks, water-soil erosion and rock slaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Adam L, van Wijk K, Otheim T et al (2013) Changes in elastic wave velocity and rock microstructure due to basalt-co2-water reactions. J Geophys Res-Solid Earth 118(8):4039–4047. https://doi.org/10.1002/jgrb.50302

    Article  Google Scholar 

  2. Azizi A, Jommi C, Musso G (2017) A water retention model accounting for the hysteresis induced by hydraulic and mechanical wetting-drying cycles. Comput Geotech 87:86–98. https://doi.org/10.1016/j.compgeo.2017.02.003

    Article  Google Scholar 

  3. Baud P, Zhu W, Wong T (2000) Failure mode and weakening effect of water on sandstone. J Geophys Res-Solid Earth 105(B7):16371–16389. https://doi.org/10.1029/2000JB900087

    Article  Google Scholar 

  4. Canton Y, Sole-Benet A, Queralt I et al (2001) Weathering of a gypsum-calcareous mudstone under semi-arid environment at tabernas, se spain: laboratory and field-based experimental approaches. CATENA 44(2):111–132. https://doi.org/10.1016/S0341-8162(00)00153-3

    Article  Google Scholar 

  5. Cherblanc F, Berthonneau J, Bromblet P et al (2016) Influence of water content on the mechanical behaviour of limestone: role of the clay minerals content. Rock Mech Rock Eng 49(6):2033–2042. https://doi.org/10.1007/s00603-015-0911-y

    Article  Google Scholar 

  6. Christaras B (1997) Landslides in iliolitic and marly formations Examples from north-western greece. Eng Geol 47(1–2):57–69. https://doi.org/10.1016/S0013-7952(96)00123-8

    Article  Google Scholar 

  7. Díaz-Pérez A, Cortés-Monroy I, Roegiers JC (2007) The role of water/clay interaction in the shale characterization. J Petrol Sci Eng 58(1):83–98. https://doi.org/10.1016/j.petrol.2006.11.011

    Article  Google Scholar 

  8. Duda M, Renner J (2013) The weakening effect of water on the brittle failure strength of sandstone. Geophys J Int 192(3):1091–1108. https://doi.org/10.1093/gji/ggs090

    Article  Google Scholar 

  9. Eeckhout V (1976) The mechanisms of strength reduction due to moisture in coal mine shales. Int J Rock Mech Min Sci Geomech Abstracts 13(2):61–67. https://doi.org/10.1016/0148-9062(76)90705-1

    Article  Google Scholar 

  10. Erguler ZA, Ulusay R (2009) Water-induced variations in mechanical properties of clay-bearing rocks. Int J Rock Mech Min Sci 46(2):355–370. https://doi.org/10.1016/j.ijrmms.2008.07.002

    Article  Google Scholar 

  11. Fang Y, Elsworth D, Wang C et al (2018) Mineralogical controls on frictional strength, stability, and shear permeability evolution of fractures. J Geophys Res: Solid Earth 123(5):3549–3563. https://doi.org/10.1029/2017JB015338

    Article  Google Scholar 

  12. Feng X, Yang C, Kong R et al (2022) Excavation-induced deep hard rock fracturing: methodology and applications. J Rock Mech Geotech Eng 14(1):1–34. https://doi.org/10.1016/j.jrmge.2021.12.003

    Article  Google Scholar 

  13. Fereidooni D, Khajevand R (2019) Utilization of the accelerated weathering test method for evaluating the durability of sedimentary rocks. Bull Eng Geol Env 78(4):2697–2716. https://doi.org/10.1007/s10064-018-1267-9

    Article  Google Scholar 

  14. Feucht LJ, Logan JM (1990) Effects of chemically active solutions on shearing behavior of a sandstone. Tectonophysics 175(1):159–176. https://doi.org/10.1016/0040-1951(90)90136-V

    Article  Google Scholar 

  15. Fredlund DG, Xing A (1994) Equations for the soil-water characteristic curve. Can Geotech J 31(4):521–532. https://doi.org/10.1139/t94-061

    Article  Google Scholar 

  16. Kang X, Xu G, Yu Z et al (2020) Experimental investigation of the interaction between water and shear-zone materials of a bedding landslide in the three gorges reservoir area, china. Bull Eng Geol Env 79(8):4079–4092. https://doi.org/10.1007/s10064-020-01812-z

    Article  Google Scholar 

  17. Kovda VA. (1981) Principles of soil science. Science Press

  18. Kristiansen K, Valtiner M, Greene GW et al (2011) Pressure solution–the importance of the electrochemical surface potentials. Geochim Et Cosmochim Acta 75(22):6882–6892. https://doi.org/10.1016/j.gca.2011.09.019

    Article  Google Scholar 

  19. Liu X, Song Y, Xia Z et al (2020) Assessing the slake durability of red stratum sandstone in different solution environments by a novel dual rotation test. Eng Geol 267:105503. https://doi.org/10.1016/j.enggeo.2020.105503

    Article  Google Scholar 

  20. Liu Z, Zhou CY, Li BT et al (2020) Effects of grain dissolution-diffusion sliding and hydro-mechanical interaction on the creep deformation of soft rocks. Acta Geotech 15(5):1219–1229. https://doi.org/10.1007/s11440-019-00823-9

    Article  Google Scholar 

  21. Lourenco S, Saulick Y, Zheng S et al (2018) Soil wettability in ground engineering: fundamentals, methods, and applications. Acta Geotech 13(1):1–14. https://doi.org/10.1007/s11440-017-0570-0

    Article  Google Scholar 

  22. Mitchell JK, Soga K (2005) Fundamentals of soil behavior. Wiley, New York

    Google Scholar 

  23. Regmi AD, Yoshida K, Dhital MR et al (2013) Effect of rock weathering, clay mineralogy, and geological structures in the formation of large landslide, a case study from dumre besei landslide, lesser Himalaya Nepal. Landslides 10(1):1–13. https://doi.org/10.1007/s10346-011-0311-7

    Article  Google Scholar 

  24. Sausse J, Jacquot E, Fritz B et al (2001) Evolution of crack permeability during fluid-rock interaction. Example of the Brezouard granite (Vosges, France). Tectonophysics 336(1–4):199–214. https://doi.org/10.1016/S0040-1951(01)00102-0

    Article  Google Scholar 

  25. Schaefer J, Backus EHG, Bonn M (2018) Evidence for auto-catalytic mineral dissolution from surface-specific vibrational spectroscopy. Nat Commun 9(1):3316. https://doi.org/10.1038/s41467-018-05762-9

    Article  Google Scholar 

  26. Seimbille F, Zuddas P, Michard G (1998) Granite–hydrothermal interaction: a simultaneous estimation of the mineral dissolution rate based on the isotopic doping technique. Earth Planet Sci Lett 157(3):183–191. https://doi.org/10.1016/S0012-821X(98)00026-0

    Article  Google Scholar 

  27. Siegel DI, Pfannkuch HO (1984) Silicate mineral dissolution at ph 4 and near standard temperature and pressure. Geochim Et Cosmochim Acta 48(1):197–201. https://doi.org/10.1016/0016-7037(84)90362-4

    Article  Google Scholar 

  28. Su X, Wu W, Tang H et al (2023) Physicochemical effect on soil in sliding zone of reservoir landslides. Eng Geol 324:107249. https://doi.org/10.1016/j.enggeo.2023.107249

    Article  Google Scholar 

  29. Surendra M. Additives to control slaking in compacted shales: Purdue University; 1980.

  30. Tang H, Li C, Hu X et al (2015) Evolution characteristics of the huangtupo landslide based on in situ tunneling and monitoring. Landslides. https://doi.org/10.1007/s10346-014-0500-2

    Article  Google Scholar 

  31. Wang C, Pei W, Zhang M et al (2021) Multi-scale experimental investigations on the deterioration mechanism of sandstone under wetting-drying cycles. Rock Mech Rock Eng 54(1):429–441. https://doi.org/10.1007/s00603-020-02257-2

    Article  Google Scholar 

  32. Wei T, Chen G, Wu L et al (2022) Rapid reduction in the shear resistance and permeability of the weak layer in the evolution of water-rock weathering. Eng Geol. https://doi.org/10.1016/j.enggeo.2022.106545

    Article  Google Scholar 

  33. Wu Q, Liu Y, Tang H et al (2023) Experimental study of the influence of wetting and drying cycles on the strength of intact rock samples from a red stratum in the three gorges reservoir area. Eng Geol 314:107013. https://doi.org/10.1016/j.enggeo.2023.107013

    Article  Google Scholar 

  34. Xie K, Jiang D, Sun Z et al (2018) Nmr, mri and ae statistical study of damage due to a low number of wetting-drying cycles in sandstone from the three gorges reservoir area. Rock Mech Rock Eng 51(11):3625–3634. https://doi.org/10.1007/s00603-018-1562-6

    Article  Google Scholar 

  35. Yao W, Li C, Zhan H et al (2020) Multiscale study of physical and mechanical properties of sandstone in three gorges reservoir region subjected to cyclic wetting-drying of Yangtze river water. Rock Mech Rock Eng 53(5):2215–2231. https://doi.org/10.1007/s00603-019-02037-7

    Article  Google Scholar 

  36. Zhang C, Bai Q, Han P et al (2023) Strength weakening and its micromechanism in water–rock interaction, a short review in laboratory tests. Int J Coal Sci Technol 10(1):10. https://doi.org/10.1007/s40789-023-00569-6

    Article  Google Scholar 

  37. Zhang C, Bai Q, Han P (2023) A review of water rock interaction in underground coal mining: problems and analysis. Bull Eng Geol Env 82(5):157. https://doi.org/10.1007/s10064-023-03142-2

    Article  Google Scholar 

  38. Zhang F, Guo HQ, Hu DW et al (2018) Characterization of the mechanical properties of a claystone by nano-indentation and homogenization. Acta Geotech 13(6):1395–1404. https://doi.org/10.1007/s11440-018-0691-0

    Article  Google Scholar 

  39. Zhang H, Tu M, Cheng H et al (2020) Breaking mechanism and control technology of sandstone straight roof in thin bedrock stope. Int J Min Sci Technol 30(2):259–263. https://doi.org/10.1016/j.ijmst.2018.10.006

    Article  Google Scholar 

  40. Zhang S, Xu Q, Hu Z (2016) Effects of rainwater softening on red mudstone of deep-seated landslide, Southwest China. Eng Geol 204:1–13. https://doi.org/10.1016/j.enggeo.2016.01.013

    Article  Google Scholar 

  41. Zhang Z, Han L, Wei S et al (2020) Disintegration law of strongly weathered purple mudstone on the surface of the drawdown area under conditions of three gorges reservoir operation. Eng Geol. https://doi.org/10.1016/j.enggeo.2020.105584

    Article  Google Scholar 

  42. Zhao Y, Taheri A, Karakus M et al (2020) Effects of water content, water type and temperature on the rheological behaviour of slag-cement and fly ash-cement paste backfill. Int J Min Sci Technol 30(3):271–278. https://doi.org/10.1016/j.ijmst.2020.03.003

    Article  Google Scholar 

  43. Zhao Z, Yang J, Zhang D et al (2017) Effects of wetting and cyclic wetting-drying on tensile strength of sandstone with a low clay mineral content. Rock Mech Rock Eng 50(2):485–491. https://doi.org/10.1007/s00603-016-1087-9

    Article  Google Scholar 

  44. Zhou W, Cheng J, Zhang G et al (2021) Effects of wetting-drying cycles on the breakage characteristics of slate rock grains. Rock Mech Rock Eng 54(12):6323–6337. https://doi.org/10.1007/s00603-021-02618-5

    Article  Google Scholar 

  45. Zhou Z, Cai X, Chen L et al (2017) Influence of cyclic wetting and drying on physical and dynamic compressive properties of sandstone. Eng Geol 220:1–12. https://doi.org/10.1016/j.enggeo.2017.01.017

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 42090054 and 41972284) and the Sichuan Technology Program (2021YFSY0036). This work was also supported by the research fund of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (No. SKLGP2020Z005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqing Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest as far as the authors are concerned.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Chen, G., Huang, J. et al. Clay minerals separation in soft rock driven by the liquid bridge force during water–rock interaction. Acta Geotech. (2024). https://doi.org/10.1007/s11440-023-02184-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11440-023-02184-w

Keywords

Navigation