Skip to main content
Log in

Kinematic response of pipe pile embedded in fractional-order viscoelastic unsaturated soil subjected to vertically propagating seismic SH-waves

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The analytical representation of kinematic interaction between pipe pile and unsaturated soil subjected to vertical SH-waves is revisited using three-dimension continuum modelling. The fractional-order standard line solid (FSLS) model is employed in the governing equation of unsaturated soil to refine the characterization of the flow-independent viscosity of the soil skeleton. The Timoshenko beam theory is utilized to describe the horizontal dynamic behavior of pipe pile. A closed series form solution of horizontal kinematic response for a pipe pile embedded in unsaturated soils under the action of vertical SH-waves is deduced theoretically with boundary conditions of pile-soil system. The solutions of the proposed model are compared with those captured from existing solutions. Finally, the effects of physical parameters in pile-soil system on the horizontal kinematic response of pipe pile under SH-waves are evaluated with analytical examples and parametric study. The results indicate that FSLS model parameters have significant impact on the horizontal kinematic response of the pipe pile, changes in the soil saturation have a relatively slight effect on the horizontal kinematic response of the pipe pile, and the length and radii of pipe pile should be moderate rather than too large or too small to make the pipe pile play a better seismic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Anoyatis G, Di Laora R, Mylonakis G (2013) Axial kinematic response of end-bearing piles to P waves. Int J Numer Anal Methods Geomech 37(17):2877–2896

    Article  Google Scholar 

  2. Cui C, Xu M, Xu C, Zhang P, Zhao J (2023) An ontology-based probabilistic framework for comprehensive seismic risk evaluation of subway stations by combining Monte Carlo simulation. Tunn Undergr Space Technol 135:105055

    Article  Google Scholar 

  3. Dai DH, El Naggar MH, Zhang N, Gao YF (2020) Kinematic response of an end-bearing pile subjected to vertical P-wave considering the three-dimensional wave scattering. Comput Geotech 120

  4. Dai DH, Naggar MHE, Zhang N, Wang ZB (2022) Rigorous solution for kinematic response of floating piles subjected to vertical P-wave. Appl Math Model 106:114–125

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu QJ, Deng FJ, He YB (2014) Kinematic response of single piles to vertically incident P-waves. Earthq Eng Struct Dyn 43(6):871–887

    Article  Google Scholar 

  6. Zhang SP, Xu Z, Deng C Kinematic responses of a pipe pile embedded in a poroelastic soil to seismic P waves. Acta Geotech

  7. Zhao M, Huang YM, Wang PG, Cao YH, Du XL (2022) An analytical solution for the dynamic response of an end-bearing pile subjected to vertical P-waves considering water-pile-soil interactions. Soil Dyn Earthq Eng 153

  8. Zheng C, Kouretzis G, Luan L, Ding X (2021) Kinematic response of pipe piles subjected to vertically propagating seismic P-waves. Acta Geotech 16(3):895–909

    Article  Google Scholar 

  9. Zheng CJ, Luo T, Kouretzis G, Ding XM, Luan LB (2022) Transverse seismic response of end-bearing pipe piles to S-waves. Int J Numer Anal Methods Geomech 46(10):1919–1940

    Article  Google Scholar 

  10. Cui CY, Meng K, Xu CS, Liang ZM, Li HJ, Pei HF (2021) Analytical solution for longitudinal vibration of a floating pile in saturated porous media based on a fictitious saturated soil pile model. Comput Geotech 131:103942

    Article  Google Scholar 

  11. Meng K, Cui CY, Liang ZM, Li HJ, Pei HF (2020) A new approach for longitudinal vibration of a large-diameter floating pipe pile in visco-elastic soil considering the three-dimensional wave effects. Comput Geotech 128

  12. Qu L, Ding X, Kouroussis G, Zheng C (2021) Dynamic interaction of soil and end-bearing piles in sloping ground: numerical simulation and analytical solution. Comput Geotech 134:103917

    Article  Google Scholar 

  13. Zhang M, Shang W, Wang XH, Chen YF (2019) Lateral dynamic analysis of single pile in partially saturated soil. Eur J Environ Civ Eng 23(10):1156–1177

    Article  Google Scholar 

  14. Liu HB, Dai GL, Zhou FX, Cao XL (2022) A mixture theory analysis for reflection phenomenon of homogeneous plane-P1-wave at the boundary of unsaturated porothermoelastic media. Geophys J Int 228(2):1237–1259

    Article  Google Scholar 

  15. Liu HB, Dai GL, Zhou FX, Mu ZL (2021) Propagation behavior of homogeneous plane-P1-wave at the interface between a thermoelastic solid medium and an unsaturated porothermoelastic medium. Eur Phys J Plus 136(11):1163

    Article  Google Scholar 

  16. Liu HB, Zhou FX, Wang LY, Zhang RL (2020) Propagation of Rayleigh waves in unsaturated porothermoelastic media. Int J Numer Anal Methods Geomech 44(12):1656–1675

    Article  Google Scholar 

  17. Liu HB, Zhou FX, Zhang RL, Yue GD, Liu CD (2020) The effect of the tortuosity of fluid phases on the phase velocity of Rayleigh wave in unsaturated porothermoelastic media. J Therm Stress 43(8):929–939

    Article  Google Scholar 

  18. Xiao M, Cui J, Li Y-D, Shan Y, Wang X (2021) Propagation and attenuation characteristics of Rayleigh waves in the irregular bottom of the ocean in porous half-spaces. Waves Random Complex Media 1–22

  19. Zhou F, Liu H, Li S (2019) Propagation of thermoelastic waves in unsaturated porothermoelastic media. J Therm Stress 42(10):1256–1271

    Article  Google Scholar 

  20. Zhou FX, Ma Q (2016) Propagation of Rayleigh waves in fluid-saturated non-homogeneous soils with the graded solid skeleton distribution. Int J Numer Anal Methods Geomech 40(11):1513–1530

    Article  Google Scholar 

  21. Dai D, El Naggar MH, Zhang N, Gao Y, Li Z (2019) Vertical vibration of a pile embedded in radially disturbed viscoelastic soil considering the three-dimensional nature of soil. Comput Geotech 111:172–180

    Article  Google Scholar 

  22. Zheng C, Gan S, Kouretzis G, Luan L, Ding X (2020) Dynamic analysis of an axially loaded pile embedded in elastic-poroelasitc layered soil of finite thickness. Int J Numer Anal Methods Geomech 44(4):533–549

    Article  Google Scholar 

  23. Cui C, Meng K, Wu YJ, Chapman D, Liang Z (2018) Dynamic response of pipe pile embedded in layered visco elastic media with radial inhomogeneity under vertical excitation. Geomech Eng 16:609–618

    Google Scholar 

  24. Cui C, Meng K, Xu C, Wang B, Xin Y (2022) Vertical vibration of a floating pile considering the incomplete bonding effect of the pile-soil interface. Comput Geotech 150:104894

    Article  Google Scholar 

  25. Zhao M, Huang Y, Wang P, Cheng X, Du X (2023) Analytical solution of vertical vibration of a floating pile considering different types of soil viscoelastic half-space. Soil Dyn Earthq Eng 165:107697

    Article  Google Scholar 

  26. Li Q, Shu W, Cao L, Duan W, Zhou B (2019) Vertical vibration of a single pile embedded in a frozen saturated soil layer. Soil Dyn Earthq Eng 122:185–195

    Article  Google Scholar 

  27. Cui C, Liang Z, Xu C, Xin Y, Wang B (2023) Analytical solution for horizontal vibration of end-bearing single pile in radially heterogeneous saturated soil. Appl Math Model 116:65–83

    Article  MathSciNet  MATH  Google Scholar 

  28. Anoyatis G, Mylonakis G, Lemnitzer A (2016) Soil reaction to lateral harmonic pile motion. Soil Dyn Earthq Eng 87:164–179

    Article  Google Scholar 

  29. Yang X, Zhang Y, Liu H, Fan X, Jiang G, El Naggar MH et al (2022) Analytical solution for lateral dynamic response of pile foundation embedded in unsaturated soil. Ocean Eng 265:112518

    Article  Google Scholar 

  30. Huang Y, Zhao M, Wang P, Xu H, Du X (2023) Analytical solution of dynamic response of horizontal vibrating pile with different soil viscoelastic half-space types. Appl Math Model 114:823–845

    Article  MathSciNet  MATH  Google Scholar 

  31. Zheng C, Kouretzis G, Luan L, Ding X (2022) Closed-form formulation for the response of single floating piles to lateral dynamic loads. Comput Geotech 152:105042

    Article  Google Scholar 

  32. Zou X, Yang Z, Wu W (2023) Horizontal dynamic response of partially embedded single pile in unsaturated soil under combined loads. Soil Dyn Earthq Eng 165:107672

    Article  Google Scholar 

  33. Ke WH, Zhang C, Deng P (2015) Kinematic response of single piles to vertical P-waves in multilayered soil. J Earthq Tsunami 9(2)

  34. Dai DH, EI Naggar MH, Zhang N, Wang ZB (2022) Rigorous solution for kinematic response of floating piles subjected to vertical P-wave. Appl Math Model 106:114–125

    Article  MathSciNet  MATH  Google Scholar 

  35. de Sanctis L, Maiorano RM, Aversa S (2010) A method for assessing kinematic bending moments at the pile head. Earthq Eng Struct Dyn 39(10):1133–1154

    Article  Google Scholar 

  36. Di Laora R, Mandolini A, Mylonakis G (2012) Insight on kinematic bending of flexible piles in layered soil. Soil Dyn Earthq Eng 43:309–322

    Article  Google Scholar 

  37. Fan K, Gazetas G, Kaynia A, Kausel E, Ahmad S (1991) Kinematic seismic response of single piles and pile groups. J Geotech Eng 117(12):1860–1879

    Article  Google Scholar 

  38. Gazetas G (1984) Seismic response of end-bearing single piles. Int J Soil Dyn Earthq Eng 3(2):82–93

    Google Scholar 

  39. Maiorano RMS, de Sanctis L, Aversa S, Mandolini A (2009) Kinematic response analysis of piled foundations under seismic excitation. Can Geotech J 46(5):571–584

    Article  Google Scholar 

  40. Mamoon S, Banerjee P (1990) Response of piles and pile groups to travelling SH-waves. Earthq Eng Struct Dynam 19(4):597–610

    Article  Google Scholar 

  41. Anoyatis G, Di Laora R, Mandolini A, Mylonakis G (2013) Kinematic response of single piles for different boundary conditions: analytical solutions and normalization schemes. Soil Dyn Earthq Eng 44:183–195

    Article  Google Scholar 

  42. Liu Q, Deng F, He Y (2014) Transverse seismic kinematics of single piles by a modified Vlasov model. Int J Numer Anal Methods Geomech 38(18):1953–1968

    Article  Google Scholar 

  43. Ghasemzadeh H, Ghoreishian Amiri SA (2013) A hydro-mechanical elastoplastic model for unsaturated soils under isotropic loading conditions. Comput Geotech 51:91–100

    Article  Google Scholar 

  44. Ye Z, Ai ZY (2022) Elastodynamic analyses of transversely isotropic unsaturated subgrade–pavement system under moving loads. Int J Numer Anal Methods Geomech 46(11):2138–2162

    Article  Google Scholar 

  45. Ye Z, Chen Y, Kong G, Chen G, Lin M (2023) 3D elastodynamic solutions to layered transversely isotropic soils considering the groundwater level. Comput Geotech 158:105354

    Article  Google Scholar 

  46. Zhang B, Muraleetharan KK (2019) Implementation of a hydromechanical elastoplastic constitutive model for fully coupled dynamic analysis of unsaturated soils and its validation using centrifuge test results. Acta Geotech 14(2):347–360

    Article  Google Scholar 

  47. Yang Z, Zhang Y, Wen M, Wu W, Liu H (2022) Dynamic response of pile embedded in unsaturated soil under SH waves considering effect of superstructure. J Sound Vib 541:117278

    Article  Google Scholar 

  48. Ai ZY, Gui JC, Mu JJ (2019) 3-D time-dependent analysis of multilayered cross-anisotropic saturated soils based on the fractional viscoelastic model. Appl Math Model 76:172–192

    Article  MathSciNet  MATH  Google Scholar 

  49. Ai ZY, Jiang YH, Zhao YZ, Mu JJ (2022) Time-dependent performance of ribbed plates on multi-layered fractional viscoelastic cross-anisotropic saturated soils. Eng Anal Bound Elem 137:1–15

    Article  MathSciNet  MATH  Google Scholar 

  50. Ai ZY, Ye ZK, Liu WJ (2022) Time-behavior of pile groups based on fractional derivative soil model. Chin J Geotech Eng 44(4):749–754

    Google Scholar 

  51. Ai ZY, Zhao YZ, Liu WJ (2020) Fractional derivative modeling for axisymmetric consolidation of multilayered cross-anisotropic viscoelastic porous media. Comput Math Appl 79(5):1321–1334

    Article  MathSciNet  MATH  Google Scholar 

  52. Liu HB, Dai GL, Zhou FX, Cao XL, Wang LY (2022) Effect of flow-independent viscosity on the propagation behavior of Rayleigh wave in partially saturated soil based on the fractional standard linear solid model. Comput Geotech 147:104763

    Article  Google Scholar 

  53. Öchsner A (2021) Timoshenko beam theory. In: Öchsner A (ed) Classical Beam theories of structural mechanics. Springer, Cham, pp 67–104

    Chapter  MATH  Google Scholar 

  54. Timoshenko SP (1921) On the correction factor for shear of the differential equation for transverse vibrations of bars of uniform cross-section. Philos Mag 744

  55. Timoshenko SP (1922) On the transverse vibrations of bars of uniform cross-section. Philos Mag 43(253):125–131

    Article  Google Scholar 

  56. Dai D, El Naggar MH, Zhang N, Wang Z (2021) Rigorous solution for kinematic response of floating piles to vertically propagating S-waves. Comput Geotech 137:104270

    Article  Google Scholar 

  57. Guo C (2018) Dynamic response of pipe pile in unsaturated soil subjected under harmonic SH waves and its model test [Master Thesis]. Taiyuan University of Technology, Taiyuan

    Google Scholar 

Download references

Acknowledgements

The present work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51878160; 52078128; 51978320), which are greatly appreciated. In addition, the authors express sincere thanks to the editors and anonymous reviewers for their constructive comments and suggestions that helped to improve this article.

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51878160; 52078128; 51978320).

Author information

Authors and Affiliations

Authors

Contributions

HL: Conceptualization, Software, Writing-Original Draft. GD: Supervision, Data Curation, Funding acquisition. FZ: Funding acquisition, Resources. XC: Visualization, Validation. LW: Visualization, Validation.

Corresponding author

Correspondence to Guoliang Dai.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

\(B_{11} (\omega )\), \(B_{12} (\omega )\), \(B_{13} (\omega )\), \(B_{21} (\omega )\), \(B_{22} (\omega )\), and \(B_{23} (\omega )\) in Eqs. (10) ~ (12) in the text.

The complex coefficients \(B_{11} (\omega )\), \(B_{12} (\omega )\), \(B_{13} (\omega )\), \(B_{21} (\omega )\), \(B_{22} (\omega )\), and \(B_{23} (\omega )\) in Eqs. (10) ~ (12) in the text are expressed as

$$\left. \begin{gathered} B_{11} \left( \omega \right) = \frac{{A_{13} \left( \omega \right)A_{22} \left( \omega \right) - A_{23} \left( \omega \right)A_{12} \left( \omega \right)}}{{A_{11} \left( \omega \right)A_{22} \left( \omega \right) - A_{21} \left( \omega \right)A_{12} \left( \omega \right)}} \hfill \\ B_{12} \left( \omega \right) = \frac{{A_{14} A_{22} \left( \omega \right)}}{{A_{11} \left( \omega \right)A_{22} \left( \omega \right) - A_{21} \left( \omega \right)A_{12} \left( \omega \right)}} \hfill \\ B_{13} \left( \omega \right) = \frac{{A_{25} A_{12} \left( \omega \right)}}{{A_{11} \left( \omega \right)A_{22} \left( \omega \right) - A_{21} \left( \omega \right)A_{12} \left( \omega \right)}} \hfill \\ \end{gathered} \right\}$$
(A.1)
$$\left. \begin{gathered} B_{21} \left( \omega \right) = \frac{{A_{13} \left( \omega \right)A_{21} \left( \omega \right) - A_{23} \left( \omega \right)A_{11} \left( \omega \right)}}{{A_{12} \left( \omega \right)A_{21} \left( \omega \right) - A_{22} \left( \omega \right)A_{11} \left( \omega \right)}} \hfill \\ B_{22} \left( \omega \right) = \frac{{A_{14} A_{21} \left( \omega \right)}}{{A_{12} \left( \omega \right)A_{21} \left( \omega \right) - A_{22} \left( \omega \right)A_{11} \left( \omega \right)}} \hfill \\ B_{23} \left( \omega \right) = \frac{{ - A_{25} A_{11} \left( \omega \right)}}{{A_{12} \left( \omega \right)A_{21} \left( \omega \right) - A_{22} \left( \omega \right)A_{11} \left( \omega \right)}} \hfill \\ \end{gathered} \right\}$$
(A.2)

with

$$\left. \begin{gathered} A_{11} \left( \omega \right) = \phi A_{s} + \left[ {\overline{a}\left( \omega \right) - \phi } \right]{{S_{w}^{2} } \mathord{\left/ {\vphantom {{S_{w}^{2} } {K_{s} }}} \right. \kern-0pt} {K_{s} }} + {{\phi S_{w} } \mathord{\left/ {\vphantom {{\phi S_{w} } {K_{w} }}} \right. \kern-0pt} {K_{w} }} \hfill \\ A_{12} \left( \omega \right) = \left[ {\overline{a}\left( \omega \right) - \phi } \right]{{S_{w} S_{g} } \mathord{\left/ {\vphantom {{S_{w} S_{g} } {K_{s} }}} \right. \kern-0pt} {K_{s} }} - \phi A_{s} \hfill \\ A_{13} \left( \omega \right) = \left[ {\overline{a}\left( \omega \right) - \phi } \right]S_{w} , \, A_{14} = \phi S_{w} , \, A_{15} = 0 \hfill \\ \end{gathered} \right\}$$
(A.3)
$$\left. \begin{gathered} A_{21} \left( \omega \right) = \left[ {\overline{a}\left( \omega \right) - \phi } \right]{{S_{w} S_{g} } \mathord{\left/ {\vphantom {{S_{w} S_{g} } {K_{s} }}} \right. \kern-0pt} {K_{s} }} - \phi A_{s} \hfill \\ A_{22} \left( \omega \right) = \phi A_{s} + \left[ {\overline{a}\left( \omega \right) - \phi } \right]{{S_{g}^{2} } \mathord{\left/ {\vphantom {{S_{g}^{2} } {K_{s} }}} \right. \kern-0pt} {K_{s} }} + \phi {{S_{g} } \mathord{\left/ {\vphantom {{S_{g} } {K_{g} }}} \right. \kern-0pt} {K_{g} }} \hfill \\ A_{23} \left( \omega \right) = \left[ {\overline{a}\left( \omega \right) - \phi } \right]S_{g} , \, A_{24} = 0, \, A_{25} = \phi S_{g} \hfill \\ \end{gathered} \right\}$$
(A.4)
$$A_{s} = \alpha_{v} md\left( {1 - S_{res} } \right)S_{e}^{{{{\left( {m + 1} \right)} \mathord{\left/ {\vphantom {{\left( {m + 1} \right)} m}} \right. \kern-0pt} m}}} \left( {S_{e}^{{ - {1 \mathord{\left/ {\vphantom {1 m}} \right. \kern-0pt} m}}} - 1} \right)^{{{{\left( {d - 1} \right)} \mathord{\left/ {\vphantom {{\left( {d - 1} \right)} d}} \right. \kern-0pt} d}}}$$
(A.5)

where \(K_{w}\) and \(K_{g}\) are bulk modulus of liquid and gas, respectively. \(\alpha_{v}\), m, and d are material parameters of the V-G model.

Appendix B

\(h_{1}\), \(h_{2}\), \(h_{3}\), \(h_{4}\), and \(h_{5}\) in Eqs. (20) and (21) in the text.

The coefficients \(h_{1}\), \(h_{2}\), \(h_{3}\), \(h_{4}\), and \(h_{5}\) in Eqs. (20) and (21) in the text are detailed as

$$h_{1} = a_{1} \left( {a_{8} a_{13} - a_{10} a_{12} } \right) + a_{3} \left( {a_{10} a_{11} - a_{7} a_{13} } \right) + a_{5} \left( {a_{7} a_{12} - a_{8} a_{11} } \right)$$
(B.1)
$$\begin{gathered} h_{2} = a_{3} \left( {a_{6} a_{10} - a_{7} a_{14} } \right) + a_{8} \left[ {a_{1} a_{14} + a_{2} a_{13} - a_{6} \left( {a_{5} + a_{11} } \right)} \right] + a_{11} \left( {a_{4} a_{10} - a_{5} a_{9} } \right) \hfill \\ \, + a_{12} \left( {a_{4} a_{5} + a_{6} a_{7} - a_{2} a_{10} } \right) + a_{13} \left[ {a_{1} a_{9} - a_{4} \left( {a_{3} + a_{7} } \right)} \right] \hfill \\ \end{gathered}$$
(B.2)
$$h_{3} = a_{9} \left[ {a_{1} a_{14} + a_{2} a_{13} - a_{6} \left( {a_{5} + a_{11} } \right)} \right] + a_{4} \left[ {a_{6} \left( {a_{10} + a_{12} } \right) - a_{14} \left( {a_{3} + a_{7} } \right) - a_{4} a_{13} } \right] + a_{8} \left( {a_{2} a_{14} - a_{6}^{2} } \right)$$
(B.3)
$$h_{4} = a_{9} \left( {a_{2} a_{14} - a_{6}^{2} } \right) - a_{4}^{2} a_{14}$$
(B.4)
$$h_{5} = {{\left[ {a_{4}^{2} a_{14} - a_{9} \left( {a_{2} a_{14} - a_{6}^{2} } \right)} \right]} \mathord{\left/ {\vphantom {{\left[ {a_{4}^{2} a_{14} - a_{9} \left( {a_{2} a_{14} - a_{6}^{2} } \right)} \right]} {\left( {a_{9} a_{14} a_{15} } \right)}}} \right. \kern-0pt} {\left( {a_{9} a_{14} a_{15} } \right)}}$$
(B.5)

Appendix C

h11 ~ h23 in Eq. (60) in the text.

The coefficients h11 ~ h23 in Eq. (60) in the text are detailed as

$$h_{11} = \frac{{\left( {F_{13} F_{24} - F_{14} F_{23} } \right)\left( {F_{21} F_{34} - F_{24} F_{31} } \right) - \left( {F_{11} F_{24} - F_{14} F_{21} } \right)\left( {F_{23} F_{34} - F_{24} F_{33} } \right)}}{{\left( {F_{12} F_{24} - F_{14} F_{22} } \right)\left( {F_{23} F_{34} - F_{24} F_{33} } \right) - \left( {F_{13} F_{24} - F_{14} F_{23} } \right)\left( {F_{22} F_{34} - F_{24} F_{32} } \right)}}$$
(C.1)
$$h_{12} = \frac{{\left( {F_{12} F_{24} - F_{14} F_{22} } \right)\left( {F_{21} F_{34} - F_{24} F_{31} } \right) - \left( {F_{11} F_{24} - F_{14} F_{21} } \right)\left( {F_{22} F_{34} - F_{24} F_{32} } \right)}}{{\left( {F_{13} F_{24} - F_{14} F_{23} } \right)\left( {F_{22} F_{34} - F_{24} F_{32} } \right) - \left( {F_{12} F_{24} - F_{14} F_{22} } \right)\left( {F_{23} F_{34} - F_{24} F_{33} } \right)}}$$
(C.2)
$$h_{13} = - \frac{{F_{11} + F_{12} h_{11} + F_{13} h_{12} }}{{F_{14} }}$$
(C.3)
$$h_{21} = \frac{{\left( {G_{13} G_{24} - G_{14} G_{23} } \right)\left( {G_{21} G_{34} - G_{24} G_{31} } \right) - \left( {G_{11} G_{24} - G_{14} G_{21} } \right)\left( {G_{23} G_{34} - G_{24} G_{33} } \right)}}{{\left( {G_{12} G_{24} - G_{14} G_{22} } \right)\left( {G_{23} G_{34} - G_{24} G_{33} } \right) - \left( {G_{13} G_{24} - G_{14} G_{23} } \right)\left( {G_{22} G_{34} - G_{24} G_{32} } \right)}}$$
(C.4)
$$h_{22} = \frac{{\left( {G_{12} G_{24} - G_{14} G_{22} } \right)\left( {G_{21} G_{34} - G_{24} G_{31} } \right) - \left( {G_{11} G_{24} - G_{14} G_{21} } \right)\left( {G_{22} G_{34} - G_{24} G_{32} } \right)}}{{\left( {G_{13} G_{24} - G_{14} G_{23} } \right)\left( {G_{22} G_{34} - G_{24} G_{32} } \right) - \left( {G_{12} G_{24} - G_{14} G_{22} } \right)\left( {G_{23} G_{34} - G_{24} G_{33} } \right)}}$$
(C.5)
$$h_{23} = - \frac{{G_{11} + G_{12} h_{21} + G_{13} h_{22} }}{{G_{14} }}$$
(C.6)

with

\(F_{11} = \beta_{1n} K_{2} \left( {\beta_{1n} r_{1} } \right)\), \(F_{12} = \beta_{2n} K_{2} \left( {\beta_{2n} r_{1} } \right)\), \(F_{13} = \beta_{3n} K_{2} \left( {\beta_{3n} r_{1} } \right)\), \(F_{14} = - \beta_{4n} K_{2} \left( {\beta_{4n} r_{1} } \right)\), \(F_{21} = \chi_{w1} \beta_{1n} \left[ {K_{2} \left( {\beta_{1n} r_{1} } \right) + K_{0} \left( {\beta_{1n} r_{1} } \right)} \right]\), \(F_{22} = \chi_{w2} \beta_{2n} \left[ {K_{2} \left( {\beta_{2n} r_{1} } \right) + K_{0} \left( {\beta_{2n} r_{1} } \right)} \right]\), \(F_{23} = \chi_{w3} \beta_{3n} \left[ {K_{2} \left( {\beta_{3n} r_{1} } \right) + K_{0} \left( {\beta_{3n} r_{1} } \right)} \right]\), \(F_{24} = - \chi_{w4} \beta_{4n} \left[ {K_{2} \left( {\beta_{4n} r_{1} } \right) - K_{0} \left( {\beta_{4n} r_{1} } \right)} \right]\), \(F_{31} = \chi_{g1} \beta_{1n} \left[ {K_{2} \left( {\beta_{1n} r_{1} } \right) + K_{0} \left( {\beta_{1n} r_{1} } \right)} \right]\), \(F_{32} = \chi_{g2} \beta_{2n} \left[ {K_{2} \left( {\beta_{2n} r_{1} } \right) + K_{0} \left( {\beta_{2n} r_{1} } \right)} \right]\), \(F_{33} = \chi_{g3} \beta_{3n} \left[ {K_{2} \left( {\beta_{3n} r_{1} } \right) + K_{0} \left( {\beta_{3n} r_{1} } \right)} \right]\), \(F_{34} = - \chi_{g4} \beta_{4n} \left[ {K_{2} \left( {\beta_{4n} r_{1} } \right) - K_{0} \left( {\beta_{4n} r_{1} } \right)} \right]\), \(G_{11} = \beta_{1n} I_{2} \left( {\beta_{1n} r_{2} } \right)\), \(G_{12} = \beta_{2n} I_{2} \left( {\beta_{2n} r_{2} } \right)\), \(G_{13} = \beta_{3n} I_{2} \left( {\beta_{3n} r_{2} } \right)\), \(G_{14} = - \beta_{4n} I_{2} \left( {\beta_{4n} r_{2} } \right)\), \(G_{21} = \chi_{w1} \beta_{1n} \left[ {I_{2} \left( {\beta_{1n} r_{2} } \right) + I_{0} \left( {\beta_{1n} r_{2} } \right)} \right]\), \(G_{22} = \chi_{w2} \beta_{2n} \left[ {I_{2} \left( {\beta_{2n} r_{2} } \right) + I_{0} \left( {\beta_{2n} r_{2} } \right)} \right]\), \(G_{23} = \chi_{w3} \beta_{3n} \left[ {I_{2} \left( {\beta_{3n} r_{2} } \right) + I_{0} \left( {\beta_{3n} r_{2} } \right)} \right]\), \(G_{24} = - \chi_{w4} \beta_{4n} \left[ {I_{2} \left( {\beta_{4n} r_{2} } \right) - I_{0} \left( {\beta_{4n} r_{2} } \right)} \right]\), \(G_{31} = \chi_{g1} \beta_{1n} \left[ {I_{2} \left( {\beta_{1n} r_{2} } \right) + I_{0} \left( {\beta_{1n} r_{2} } \right)} \right]\), \(G_{32} = \chi_{g2} \beta_{2n} \left[ {I_{2} \left( {\beta_{2n} r_{2} } \right) + I_{0} \left( {\beta_{2n} r_{2} } \right)} \right]\), \(G_{33} = \chi_{g3} \beta_{3n} \left[ {I_{2} \left( {\beta_{3n} r_{2} } \right) + I_{0} \left( {\beta_{3n} r_{2} } \right)} \right]\), \(G_{34} = - \chi_{g4} \beta_{4n} \left[ {I_{2} \left( {\beta_{4n} r_{2} } \right) - I_{0} \left( {\beta_{4n} r_{2} } \right)} \right]\).

Appendix D

\(\varsigma_{1n}\), \(\varsigma_{2n}\), \(\varsigma_{3n}\), \(\varsigma_{4n}\), \(\varsigma_{5n}\), \(\varsigma_{6n}\), \(\varsigma_{7n}\), and \(\varsigma_{8n}\) in Eqs. (61) ~ (68) in the text.

The coefficients \(\varsigma_{1n}\), \(\varsigma_{2n}\), \(\varsigma_{3n}\), \(\varsigma_{4n}\), \(\varsigma_{5n}\), \(\varsigma_{6n}\), \(\varsigma_{7n}\), and \(\varsigma_{8n}\) in Eqs. (61) ~ (68) in the text are detailed as

$$\varsigma_{1n} = \frac{1}{2}\left\{ \begin{gathered} - \beta_{1n} \left[ {K_{2} \left( {\beta_{1n} r} \right) + K_{0} \left( {\beta_{1n} r} \right)} \right] - h_{11} \beta_{2n} \left[ {K_{2} \left( {\beta_{2n} r} \right) + K_{0} \left( {\beta_{2n} r} \right)} \right] \hfill \\ - h_{12} \beta_{3n} \left[ {K_{2} \left( {\beta_{3n} r} \right) + K_{0} \left( {\beta_{3n} r} \right)} \right] + h_{13} \beta_{4n} \left[ {K_{2} \left( {\beta_{4n} r} \right) - K_{0} \left( {\beta_{4n} r} \right)} \right] \hfill \\ \end{gathered} \right\}$$
(D.1)
$$\varsigma_{2n} = \frac{1}{2}\left\{ \begin{gathered} - \beta_{1n} \left[ {K_{2} \left( {\beta_{1n} r} \right) - K_{0} \left( {\beta_{1n} r} \right)} \right] - h_{11} \beta_{2n} \left[ {K_{2} \left( {\beta_{2n} r} \right) - K_{0} \left( {\beta_{2n} r} \right)} \right] \hfill \\ - h_{12} \beta_{3n} \left[ {K_{2} \left( {\beta_{3n} r} \right) - K_{0} \left( {\beta_{3n} r} \right)} \right] + h_{13} \beta_{4n} \left[ {K_{2} \left( {\beta_{4n} r} \right) + K_{0} \left( {\beta_{4n} r} \right)} \right] \hfill \\ \end{gathered} \right\}$$
(D.2)
$$\varsigma_{3n} = \frac{1}{2}\left\{ \begin{gathered} \beta_{1n} \left[ {I_{2} \left( {\beta_{1n} r} \right) + I_{0} \left( {\beta_{1n} r} \right)} \right] + h_{21} \beta_{2n} \left[ {I_{2} \left( {\beta_{2n} r} \right) + I_{0} \left( {\beta_{2n} r} \right)} \right] \hfill \\ + h_{22} \beta_{3n} \left[ {I_{2} \left( {\beta_{3n} r} \right) + I_{0} \left( {\beta_{3n} r} \right)} \right] - h_{23} \beta_{4n} \left[ {I_{2} \left( {\beta_{4n} r} \right) - I_{0} \left( {\beta_{4n} r} \right)} \right] \hfill \\ \end{gathered} \right\}$$
(D.3)
$$\varsigma_{4n} = \frac{1}{2}\left\{ \begin{gathered} \beta_{1n} \left[ {I_{2} \left( {\beta_{1n} r} \right) - I_{0} \left( {\beta_{1n} r} \right)} \right] + h_{21} \beta_{2n} \left[ {I_{2} \left( {\beta_{2n} r} \right) - I_{0} \left( {\beta_{2n} r} \right)} \right] \hfill \\ + h_{22} \beta_{3n} \left[ {I_{2} \left( {\beta_{3n} r} \right) - I_{0} \left( {\beta_{3n} r} \right)} \right] - h_{23} \beta_{4n} \left[ {I_{2} \left( {\beta_{4n} r} \right) + I_{0} \left( {\beta_{4n} r} \right)} \right] \hfill \\ \end{gathered} \right\}$$
(D.4)
$$\begin{gathered} \varsigma_{5n} = m_{1} \beta_{1n}^{2} K_{1} \left( {\beta_{1n} r} \right) + m_{2} h_{11} \beta_{2n}^{2} K_{1} \left( {\beta_{2n} r} \right) + m_{3} h_{12} \beta_{3n}^{2} K_{1} \left( {\beta_{3n} r} \right) + m_{4} h_{13} \beta_{4n}^{2} K_{1} \left( {\beta_{4n} r} \right) \hfill \\ \, + m_{4} \left[ {\beta_{1n}^{2} K_{3} \left( {\beta_{1n} r} \right) + h_{11} \beta_{2n}^{2} K_{3} \left( {\beta_{2n} r} \right) + h_{12} \beta_{3n}^{2} K_{3} \left( {\beta_{3n} r} \right) - h_{13} \beta_{4n}^{2} K_{3} \left( {\beta_{4n} r} \right)} \right] \hfill \\ \end{gathered}$$
(D.5)
$$\begin{gathered} \varsigma_{6n} = m_{1} \beta_{1n}^{2} I_{1} \left( {\beta_{1n} r} \right) + m_{2} h_{21} \beta_{2n}^{2} I_{1} \left( {\beta_{2n} r} \right) + m_{3} h_{22} \beta_{3n}^{2} I_{1} \left( {\beta_{3n} r} \right) + m_{4} h_{23} \beta_{4n}^{2} I_{1} \left( {\beta_{4n} r} \right) \hfill \\ \, + m_{4} \left[ {\beta_{1n}^{2} I_{3} \left( {\beta_{1n} r} \right) + h_{21} \beta_{2n}^{2} I_{3} \left( {\beta_{2n} r} \right) + h_{22} \beta_{3n}^{2} I_{3} \left( {\beta_{3n} r} \right) - h_{23} \beta_{4n}^{2} I_{3} \left( {\beta_{4n} r} \right)} \right] \hfill \\ \end{gathered}$$
(D.6)
$$\varsigma_{7n} = \frac{{\overline{\mu }\left( \omega \right)}}{2}\left\{ \begin{gathered} \beta_{1n}^{2} \left[ {K_{3} \left( {\beta_{1n} r} \right) - K_{1} \left( {\beta_{1n} r} \right)} \right] + h_{11} \beta_{2n}^{2} \left[ {K_{3} \left( {\beta_{2n} r} \right) - K_{1} \left( {\beta_{2n} r} \right)} \right] \hfill \\ + h_{12} \beta_{3n}^{2} \left[ {K_{3} \left( {\beta_{3n} r} \right) - K_{1} \left( {\beta_{3n} r} \right)} \right] - h_{13} \beta_{4n}^{2} \left[ {K_{3} \left( {\beta_{4n} r} \right) + K_{1} \left( {\beta_{4n} r} \right)} \right] \hfill \\ \end{gathered} \right\}$$
(D.7)
$$\varsigma_{8n} = \frac{{\overline{\mu }\left( \omega \right)}}{2}\left\{ \begin{gathered} \beta_{1n}^{2} \left[ {I_{3} \left( {\beta_{1n} r} \right) - I_{1} \left( {\beta_{1n} r} \right)} \right] + h_{21} \beta_{2n}^{2} \left[ {I_{3} \left( {\beta_{2n} r} \right) - I_{1} \left( {\beta_{2n} r} \right)} \right] \hfill \\ + h_{22} \beta_{3n}^{2} \left[ {I_{3} \left( {\beta_{3n} r} \right) - I_{1} \left( {\beta_{3n} r} \right)} \right] - h_{23} \beta_{4n}^{2} \left[ {I_{3} \left( {\beta_{4n} r} \right) + I_{1} \left( {\beta_{4n} r} \right)} \right] \hfill \\ \end{gathered} \right\}$$
(D.8)

where\(m_{1} = \overline{\lambda }\left( \omega \right) + S_{w} C_{21} \left( \omega \right) + S_{g} C_{31} \left( \omega \right) + \chi_{w1} \left[ {S_{w} C_{22} \left( \omega \right) + S_{g} C_{32} \left( \omega \right)} \right] + \chi_{g1} \left[ {S_{w} C_{23} \left( \omega \right) + S_{g} C_{33} \left( \omega \right)} \right] + {{3\overline{\mu }\left( \omega \right)} \mathord{\left/ {\vphantom {{3\overline{\mu }\left( \omega \right)} 2}} \right. \kern-0pt} 2}\),\(m_{2} = \overline{\lambda }\left( \omega \right) + S_{w} C_{21} \left( \omega \right) + S_{g} C_{31} \left( \omega \right) + \chi_{w2} \left[ {S_{w} C_{22} \left( \omega \right) + S_{g} C_{32} \left( \omega \right)} \right] + \chi_{g2} \left[ {S_{w} C_{23} \left( \omega \right) + S_{g} C_{33} \left( \omega \right)} \right] + {{3\overline{\mu }\left( \omega \right)} \mathord{\left/ {\vphantom {{3\overline{\mu }\left( \omega \right)} 2}} \right. \kern-0pt} 2}\),\(m_{3} = \overline{\lambda }\left( \omega \right) + S_{w} C_{21} \left( \omega \right) + S_{g} C_{31} \left( \omega \right) + \chi_{w3} \left[ {S_{w} C_{22} \left( \omega \right) + S_{g} C_{32} \left( \omega \right)} \right] + \chi_{g3} \left[ {S_{w} C_{23} \left( \omega \right) + S_{g} C_{33} \left( \omega \right)} \right] + {{3\overline{\mu }\left( \omega \right)} \mathord{\left/ {\vphantom {{3\overline{\mu }\left( \omega \right)} 2}} \right. \kern-0pt} 2}\),\(m_{4} = {{\overline{\mu }\left( \omega \right)} \mathord{\left/ {\vphantom {{\overline{\mu }\left( \omega \right)} 2}} \right. \kern-0pt} 2}\).

Appendix E

The nomenclature of symbols in the text.

The nomenclature of symbols in the text is listed below:

Roman

Ap:

Cross-section area of pipe pile

Au:

Kinematic amplification factor of pile head

\(\overline{a}(\omega )\) :

Complex moduli of unsaturated soil

E0 :

Relaxation modulus

Ep :

Young’s modulus of pipe pile

Fp:

Shear force of pipe pile

f :

Frequency

f1 :

Characteristic frequency of soil

fs1 :

Horizontal resistance of outer soil to pipe pile

fs2 :

Horizontal resistance of inner soil to pipe pile

Gp :

Shear modulus of pipe pile

H :

Pile length

I0() :

First kind of zero-order modified Bessel function

Ip:

Moment of inertia for pipe pile

Iu:

Horizontal kinematic interaction factor of pile-soil system

i :

Imaginary unit

K :

Modified shear factor of pipe pile

K0() :

Second kind of zero-order modified Bessel function

Kb0 :

Relaxation bulk moduli of soil skeleton

Kg :

Bulk modulus of gas

Ks :

Bulk moduli of soil particles

Kw :

Bulk modulus of liquid

k :

Intrinsic permeability

krw :

Relative permeability of liquid

krg :

Relative permeability of gas

Mp:

Bending moment of pipe pile

m, αv, d :

Material parameters of V-G model

P :

Vertical load due to the mass of superstructure

pg:

Gas pressure

pw:

Liquid pressure

r :

Fractional-order index of FSLS model

r1 :

Outer radius of pipe pile

r2 :

Inner radius of pipe pile

Se :

Effective liquid saturation

Sg :

Gas saturation

Sres:

Liquid saturation at residual state

Sw :

Liquid saturation

t :

Time

UF :

Displacement of free-field soil relative to bedrock

Ush:

Horizontal displacement of SH-wave

uF :

Free-field displacement of soil

ui :

Displacement component of soil skeleton

up :

Horizontal displacement amplitude of pipe pile

ush:

Horizontal displacement amplitude of SH-wave

Vs:

Shear velocity of soil

vi :

Relative displacement component of gas

wi :

Relative displacement component of liquid

Greek

\(\overline{\varepsilon }(\omega )\) :

Strain after Fourier transformation

\(\hat{\varepsilon }_{s}\) :

Volumetric strain of soil skeleton

\(\hat{\varepsilon }_{w}\) :

Relative volumetric strains of liquid

\(\hat{\varepsilon }_{g}\) :

Relative volumetric strains of gas

θp :

Rotation angle of pipe pile

\(\overline{\lambda }(\omega )\) :

Complex moduli of unsaturated soil

μ :

Shear modulus of soil

μ0 :

Relaxation shear moduli of soil skeleton

\(\overline{\mu }(\omega )\) :

Complex moduli of unsaturated soil

μg:

Dynamic viscosity of gas

μw:

Dynamic viscosity of liquid

νp:

Poisson’s ratio of pipe pile

ρ :

Soil density

ρg :

Absolute mass density of the gas

ρp :

Density of pipe pile

ρs :

Absolute mass density of the solid

ρw :

Absolute mass density of the liquid

\(\overline{\sigma }(\omega )\) :

Stress after Fourier transformation

\(\hat{\sigma }_{r}\) :

Normal stress of unsaturated soil

\(\hat{\sigma }_{r\theta }\) :

Shear stress of unsaturated soil

τε :

Strain relaxation time

τσ :

Stress relaxation time

φg:

Scalar potential of gas

φs:

Scalar potential of solid

φw:

Scalar potential of liquid

ϕ :

Porosity of unsaturated soil

ψg:

Vector potential of gas

ψs:

Vector potential of solid

ψw:

Vector potential of liquid

ω :

Angular frequency

2 :

Laplace operator

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Dai, G., Zhou, F. et al. Kinematic response of pipe pile embedded in fractional-order viscoelastic unsaturated soil subjected to vertically propagating seismic SH-waves. Acta Geotech. 18, 6803–6830 (2023). https://doi.org/10.1007/s11440-023-01931-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-023-01931-3

Keywords

Navigation