Skip to main content
Log in

Kinematic responses of a pipe pile embedded in a poroelastic soil to seismic P waves

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

In this paper, the kinematic responses of a pipe pile embedded in a poroelastic soil layer with rigid substratum under time-harmonic seismic P waves are studied with analytical development. The pipe pile is regarded as a two-dimensional (2D) hollow bar with both vertical and radial deformations, and its equations of motion are established by using the Hamilton’s variational principle. Both the inner and outer soils around the pile are treated as three-dimensional fluid-filled porous continuum which are described with the Boer’s poroelastic medium model. Firstly, the soil skeleton volume strain and the pore liquid pressure designated as intermediate variables are employed to cope with the soil’s motion equations. Then with the aid of the separation variables method, the pile–soil motion equations are solved. Upon the pile–soil boundary and interfacial conditions, the analytical solutions for the kinematic amplification coefficient and kinematic response factor describing the pile–soil seismic effects are derived. The proposed solutions are verified by the comparisons with the numerical results of the reported solutions and the corresponding finite element model (FEM). Finally, the parametric analyses on the dynamic characteristics of the coupling pile–soil system under different pile–soil parameters are performed, and relevant meaningful conclusions are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Achenbach JD (1973) Wave propagation in elastic solids. North-Holland, Amsterdam, London

    MATH  Google Scholar 

  2. Aki K, Richards PG (1980) Quantitative seismology: Theory and Methods. W. H. Freeman, San Francisco

    Google Scholar 

  3. Anoyatis G, Laora DR, Mylonakis G (2013) Axial kinematic response of end-bearing piles to P waves. Int J Numer Anal Meth Geomech 37:2877–2896

    Article  Google Scholar 

  4. Barros LDAP, Labaki J, Mesquita E (2019) IBEM-FEM model of a piled plate within a transversely isotropic half-space. Eng Anal Boundary Elem 101:281–296

    Article  MathSciNet  MATH  Google Scholar 

  5. Bathe KJ (1983) Nonlinear finite element analysis and adina. Proceedings of the 4th ADINA Conference

  6. Boer DR, Liu ZF (1994) Plane waves in a semi-infinite fluid saturated porous medium. Transp Porous Media 16:147–173

    Article  Google Scholar 

  7. Dai DH, Naggar EHM, Zhang N et al (2020) Kinematic response of an end-bearing pile subjected to vertical P-wave considering the three-dimensional wave scattering. Comput Geotechn 120:103368

    Article  Google Scholar 

  8. He R, Kaynia AM, Zhang JS et al (2020) Seismic response of monopiles to vertical excitation in offshore engineering. Ocean Eng 216:108120

    Article  Google Scholar 

  9. He R, Kaynia AM, Zhang JS (2021) Lateral free-field responses and kinematic interaction of monopiles to obliquely incident seismic waves in offshore engineering. Comput Geotech 132:103956

    Article  Google Scholar 

  10. Hussien NM, Tobita T, Iai S et al (2016) Soil-pile-structure kinematic and inertial interaction observed in geotechnical centrifuge experiments. Soil Dyn Earthq Eng 89:75–84

    Article  Google Scholar 

  11. Ji F, Pak YSR (1996) Scattering of vertically-incident P-waves by an embedded pile. Soil Dyn Earthq Eng 15:211–222

    Article  Google Scholar 

  12. Ke WH, Zhang C, Deng P (2015) Kinematic response of single piles to vertical P-waves in multilayered soil. J Earthq Tsunami 9(2):1550004

    Article  Google Scholar 

  13. Liu QJ, Deng FJ, He YB (2014) Kinematic response of single piles to vertically incident P-waves. Earthq Eng Struct Dynam 43(6):871–887

    Article  Google Scholar 

  14. Lu JF, Jeng DS (2008) Poroelastic model for pile-soil interaction in a half-space porous medium due to seismic waves. Int J Numer Anal Meth Geomech 32:1–41

    Article  MATH  Google Scholar 

  15. Mamoon SM, Ahmad S (1990) Seismic response of piles to obliquely incident SH, SV, and P waves. J Geotech Eng 116(2):186–204

    Article  Google Scholar 

  16. Masoumi HR, Degrande G (2008) Numerical modeling of free field vibrations due to pile driving using a dynamic soil-structure interaction formulation. J Comput Appl Math 215:503–511

    Article  MathSciNet  MATH  Google Scholar 

  17. Masoumi HR, Degrande G, Lombaert G (2007) Prediction of free field vibrations due to pile driving using a dynamic soil-structure interaction formulation. Soil Dyn Earthq Eng 27:126–143

    Article  Google Scholar 

  18. Mindlin RD, Herrmann G (1951) A one-dimensional theory of compressional waves in an elastic rod. Proc. 1st Nat. Congr. Appl. Mech., Chicago, 187–191

  19. Morse PM, Feshbach H (1953) Methods of theoretical physics. McGraw-Hill, New York

    MATH  Google Scholar 

  20. Mylonakis G, Gazetas G (2002) Kinematic pile response to vertical P-wave seismic excitation. J Geotech Geoenviron Eng 128(10):860–867

    Article  Google Scholar 

  21. Pak YSR, Gobert AT (1993) Axisymmetric problems of a partially embedded rod with radial deformation. Int J Solids Struct 30(13):1745–1759

    Article  MATH  Google Scholar 

  22. Papazoglou AJ, Elnashai AS (1996) Analytical and field evidence of the damaging effect of vertical earthquake ground motion. Earthquake Eng Struct Dynam 25(10):1109–1137

    Article  Google Scholar 

  23. Shahmohamadi M, Khojasteh A, Rahimian M et al (2011) Seismic response of an embedded pile in a transversely isotropic half-space under incident P-wave excitations. Soil Dyn Earthq Eng 31:361–371

    Article  Google Scholar 

  24. Wang P, Cai YQ, Ding GY et al (2012) Seismic effects of incident P waves on an embedded foundation in poroelastic half-space. J Sound Vib 331:1597–1611

    Article  Google Scholar 

  25. Zhang SP, Cui CY, Yang G (2019) Coupled vibration of an interaction system including saturated soils, pile group and superstructure under the vertical motion of bedrocks. Soil Dyn Earthq Eng 123:425–434

    Article  Google Scholar 

  26. Zhang SP, Pak R, Zhang JH (2021) Vertical time-harmonic coupling vibration of an impermeable, rigid, circular plate resting on a finite, poroelastic soil layer. Acta Geotech 16:911–935

    Article  Google Scholar 

  27. Zhang SP, Pak YSR, Zhang JH (2022) Three-dimensional frequency-domain Green’s functions of a finite fluid-saturated soil layer underlain by rigid bedrock to interior loadings. Int J Geomech 22(1):04021267

    Article  Google Scholar 

  28. Zhang SP, Xu Z, Deng C (2022) Vertical frequency-domain compliance of an elastic pipe pile embedded in a liquid-filled and porous-viscoelastic soil. Int J Numer Anal Methods Geomech. https://doi.org/10.1002/nag.3347

    Article  Google Scholar 

  29. Zhang SP, Zhang JH, Ma YB, Pak YSR (2021) Vertical dynamic interactions of poroelastic soils and embedded piles considering the effects of pile-soil radial deformations. Soils Found 61:16–34

    Article  Google Scholar 

  30. Zheng CJ, Kouretzis G, Luan LB et al (2021) Kinematic response of pipe piles subjected to vertically propagating seismic P-waves. Acta Geotech 16:895–909

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China [Grant Number 51908070, 51978085, 51927814, and 52025085], the Natural Science Foundation of Hunan Province (2020JJ5596), the General Project of Training Program for College students Innovation and Entrepreneurship of Hunan Province (S202113635007), the Open Funds of the National Engineering Laboratory of Highway Maintenance Technology through Grant kfj190103, and the Key Laboratory of Road Structure and Material of the Ministry of Transport through Grant kfj170304 (Changsha University of Science & Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiping Zhang.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interests.

Appendix 1 General solutions of displacements and stresses for poroelastic soils

$$ \begin{aligned} u_{sk} = & T_{2k} b_{1k} \left[ { - A_{1k} K_{1} (b_{1k} r) + A_{2k} I_{1} (b_{1k} r)} \right]\left[ {B_{1k} \sin (b_{2k} z) + B_{2k} \cos (b_{2k} z)} \right] \\ & + T_{3k} b_{3k} \left[ { - A_{3k} K_{1} (b_{3k} r) + A_{4k} I_{1} (b_{3k} r)} \right]\left[ {B_{3k} \sin (b_{3k} z) + B_{4k} \cos (b_{3k} z)} \right], \\ & + \left[ {A_{5k} K_{1} (b_{4k} r) + A_{6k} I_{1} (b_{4k} r)} \right]\left[ {B_{5k} \sin (b_{5k} z) + B_{6k} \cos (b_{5k} z)} \right] \\ \end{aligned} $$
(45)
$$ \begin{aligned} w_{sk} = & T_{4k} b_{2k} \left[ {A_{1k} K_{0} (b_{1k} r) + A_{2k} I_{0} (b_{1k} r)} \right]\left[ {B_{1k} \cos (b_{2k} z) - B_{2k} \sin (b_{2k} z)} \right] \\ {\kern 1pt} & + T_{5k} b_{3k} \left[ {A_{3k} K_{0} (b_{3k} r) + A_{4k} I_{0} (b_{3k} r)} \right]\left[ {B_{3k} \cos (b_{3k} z) - B_{4k} \sin (b_{3k} z)} \right], \\ & + \left[ {A_{7k} K_{0} (b_{6k} r) + A_{8k} I_{0} (b_{6k} r)} \right]\left[ {B_{7k} \sin (b_{7k} z) + B_{8k} \cos (b_{7k} z)} \right] \\ \end{aligned} $$
(46)
$$ \begin{aligned} u_{fk} = & \left\{ {\frac{{i\omega s_{vk} \alpha_{k}^{2} T_{2k} b_{1k} + n^{fk} a_{3k} b_{1k} }}{{(i\omega s_{vk} - \rho^{fk} \omega^{2} )\alpha_{k}^{2} }}} \right\}\left[ { - A_{1k} K_{1} (b_{1k} r) + A_{2k} I_{1} (b_{1k} r)} \right]\left[ {B_{1k} \sin (b_{2k} z) + B_{2k} \cos (b_{2k} z)} \right] \\ & + \left\{ {\frac{{i\omega s_{vk} T_{3k} b_{3k} - n^{fk} b_{3k} }}{{(i\omega s_{vk} - \rho^{fk} \omega^{2} )}}} \right\}\left[ { - A_{3k} K_{1} (b_{3k} r) + A_{4k} I_{1} (b_{3k} r)} \right]\left[ {B_{3k} \sin (b_{3k} z) + B_{4k} \cos (b_{3k} z)} \right], \\ {\kern 1pt} & + \frac{{i\omega s_{vk} }}{{(i\omega s_{vk} - \rho^{fk} \omega^{2} )}}\left[ {A_{5k} K_{1} (b_{4k} r) + A_{6k} I_{1} (b_{4k} r)} \right]\left[ {B_{5k} \sin (b_{5k} z) + B_{6k} \cos (b_{5k} z)} \right] \\ \end{aligned} $$
(47)
$$ \begin{aligned} w_{fk} = & \left\{ {\frac{{i\omega s_{vk} \alpha_{k}^{2} T_{4k} b_{2k} + n^{fk} a_{3k} b_{2k} }}{{(i\omega s_{vk} - \rho^{fk} \omega^{2} )\alpha_{k}^{2} }}} \right\}\left[ {A_{1k} K_{0} (b_{1k} r) + A_{2k} I_{0} (b_{1k} r)} \right]\left[ {B_{1k} \cos (b_{2k} z) - B_{2k} \sin (b_{2k} z)} \right] \\ & + \left\{ {\frac{{i\omega s_{vk} T_{5k} b_{3k} - n^{fk} b_{3k} }}{{(i\omega s_{vk} - \rho^{fk} \omega^{2} )}}} \right\}\left[ {A_{3k} K_{0} (b_{3k} r) + A_{4k} I_{0} (b_{3k} r)} \right]\left[ {B_{3k} \cos (b_{3k} z) - B_{4k} \sin (b_{3k} z)} \right], \\ & + \frac{{i\omega s_{vk} }}{{(i\omega s_{vk} - \rho^{fk} \omega^{2} )}}\left[ {A_{7k} K_{0} (b_{6k} r) + A_{8k} I_{0} (b_{6k} r)} \right]\left[ {B_{7k} \sin (b_{7k} z) + B_{8k} \cos (b_{7k} z)} \right] \\ \end{aligned} $$
(48)
$$ \begin{aligned} \sigma_{rrk}^{s} = & \left\{ \begin{gathered} (\lambda^{sk} + 2\mu^{sk} T_{2k} b_{1k}^{2} )\left[ {A_{1k} K_{0} (b_{1k} r) + A_{2k} I_{0} (b_{1k} r)} \right] \hfill \\ + 2\mu^{sk} T_{2k} b_{1k} \frac{1}{r}\left[ {A_{1k} K_{1} (b_{1k} r) - A_{2k} I_{1} (b_{1k} r)} \right] \hfill \\ \end{gathered} \right\}\left[ {B_{1k} \sin (b_{2k} z) + B_{2k} \cos (b_{2k} z)} \right] \\ {\kern 1pt} & + 2\mu^{sk} T_{3k} b_{3k} \left\{ \begin{gathered} - A_{3k} \left[ { - b_{3k} K_{0} (b_{3k} r) - \frac{1}{r}K_{1} (b_{3k} r)} \right] \hfill \\ + A_{4k} \left[ {b_{3k} I_{0} (b_{3k} r) - \frac{1}{r}I_{1} (b_{3k} r)} \right] \hfill \\ \end{gathered} \right\}\left[ {B_{3k} \sin (b_{3k} z) + B_{4k} \cos (b_{3k} z)} \right], \\ & + 2\mu^{sk} \left\{ \begin{gathered} A_{5k} \left[ { - b_{4k} K_{0} (b_{4k} r) - \frac{1}{r}K_{1} (b_{4k} r)} \right] \hfill \\ + A_{6k} \left[ {b_{4k} I_{0} (b_{4k} r) - \frac{1}{r}I_{1} (b_{4k} r)} \right] \hfill \\ \end{gathered} \right\}\left[ {B_{5k} \sin (b_{5k} z) + B_{6k} \cos (b_{5k} z)} \right] \\ \end{aligned} $$
(49)
$$ \begin{aligned} \sigma_{zzk}^{s} = & (\lambda^{sk} - 2\mu^{sk} T_{4k} b_{2k}^{2} )\left[ {A_{1k} K_{0} (b_{1k} r) + A_{2k} I_{0} (b_{1k} r)} \right]\left[ {B_{1k} \sin (b_{2k} z) + B_{2k} \cos (b_{2k} z)} \right] \\ {\kern 1pt} & - 2\mu^{sk} T_{5k} b_{3k}^{2} \left[ {A_{3k} K_{0} (b_{3k} r) + A_{4k} I_{0} (b_{3k} r)} \right]\left[ {B_{3k} \sin (b_{3k} z) + B_{4k} \cos (b_{3k} z)} \right], \\ {\kern 1pt} & + 2\mu^{sk} b_{7k} \left[ {A_{7k} K_{0} (b_{6k} r) + A_{8k} I_{0} (b_{6k} r)} \right]\left[ {B_{7k} \cos (b_{7k} z) - B_{8k} \sin (b_{7k} z)} \right] \\ \end{aligned} $$
(50)
$$ \begin{aligned} \sigma_{rzk}^{s} = \sigma_{zrk}^{s} = & \mu^{sk} (T_{2k} + T_{4k} )b_{1k} b_{2k} \left[ { - A_{1k} K_{1} (b_{1k} r) + A_{2k} I_{1} (b_{1k} r)} \right]\left[ {B_{1k} \cos (b_{2k} z) - B_{2k} \sin (b_{2k} z)} \right] \\ {\kern 1pt} & + \mu^{sk} (T_{3k} + T_{5k} )b_{3k}^{2} \left[ { - A_{3k} K_{1} (b_{3k} r) + A_{4k} I_{1} (b_{3k} r)} \right]\left[ {B_{3k} \cos (b_{3k} z) - B_{4k} \sin (b_{3k} z)} \right], \\ {\kern 1pt} & + \mu^{sk} b_{5k} \left[ {A_{5k} K_{1} (b_{4k} r) + A_{6k} I_{1} (b_{4k} r)} \right]\left[ {B_{5k} \cos (b_{5k} z) - B_{6k} \sin (b_{5k} z)} \right] \\ {\kern 1pt} & + \mu^{sk} b_{6k} \left[ { - A_{7k} K_{1} (b_{6k} r) + A_{8k} I_{1} (b_{6k} r)} \right]\left[ {B_{7k} \sin (b_{7k} z) + B_{8k} \cos (b_{7k} z)} \right] \\ \end{aligned} $$
(51)

where \(b_{1k} \sim b_{7k}\), \(A_{1k} \sim A_{8k}\), and \(B_{1k} \sim B_{8k}\) are undetermined constants; \(I_{1} ( \cdot )\) and \(K_{1} ( \cdot )\) are the first-order modified Bessel functions of the first and second types, respectively; and

$$ b_{5k}^{2} - b_{4k}^{2} = \frac{1}{{\mu^{sk} }}\left[ {\rho^{sk} \omega^{2} + \frac{{\rho^{fk} \omega^{2} i\omega s_{vk} }}{{(i\omega s_{vk} - \rho^{fk} \omega^{2} )}}} \right];\;b_{7k}^{2} - b_{6k}^{2} = \frac{1}{{\mu^{sk} }}\left[ {\rho^{sk} \omega^{2} + \frac{{\rho^{fk} \omega^{2} i\omega s_{vk} }}{{(i\omega s_{vk} - \rho^{fk} \omega^{2} )}}} \right]; $$
$$ T_{2k} = \frac{{\left\{ {(\lambda^{sk} + \mu^{sk} ) + \frac{{a_{3k} }}{{\alpha_{k}^{2} }}\left[ {1 + \frac{{\rho^{fk} \omega^{2} n^{fk} }}{{(i\omega s_{vk} - \rho^{fk} \omega^{2} )}}} \right]} \right\}}}{{\left\{ {\mu^{sk} \alpha_{k}^{2} - \left[ {\rho^{sk} \omega^{2} + \frac{{\rho^{fk} \omega^{2} i\omega s_{vk} }}{{(i\omega s_{vk} - \rho^{fk} \omega^{2} )}}} \right]} \right\}}};\;T_{3k} = \frac{{\left[ {1 + \frac{{\rho^{fk} \omega^{2} n^{fk} }}{{(i\omega s_{vk} - \rho^{fk} \omega^{2} )}}} \right]}}{{\left[ {\rho^{sk} \omega^{2} + \frac{{\rho^{fk} \omega^{2} i\omega s_{vk} }}{{(i\omega s_{vk} - \rho^{fk} \omega^{2} )}}} \right]}}; $$
$$ T_{4k} = \frac{{\frac{{a_{3k} }}{{\alpha_{k}^{2} }}\left[ {1 + \frac{{\rho^{fk} \omega^{2} n^{fk} }}{{(i\omega s_{vk} - \rho^{fk} \omega^{2} )}}} \right] + (\lambda^{sk} + \mu^{sk} )}}{{\mu^{sk} \alpha_{k}^{2} - \left[ {\rho^{sk} \omega^{2} + \frac{{\rho^{fk} \omega^{2} i\omega s_{vk} }}{{(i\omega s_{vk} - \rho^{fk} \omega^{2} )}}} \right]}};\;T_{5k} = \frac{{\left[ {1 + \frac{{\rho^{fk} \omega^{2} n^{fk} }}{{(i\omega s_{vk} - \rho^{fk} \omega^{2} )}}} \right]}}{{\rho^{sk} \omega^{2} + \frac{{\rho^{fk} \omega^{2} i\omega s_{vk} }}{{(i\omega s_{vk} - \rho^{fk} \omega^{2} )}}}}. $$

Appendix 2 Determined coefficients in the pile–soil solutions

Coefficients in Eqs. (28 and 29):

For the outer soil part,

$$ F_{O1}^{n} (r) = T_{2O} K_{1} (b_{1On} r);F_{O2}^{n} (r) = T_{3O} K_{1} (b_{n} r);F_{O3}^{n} (r) = K_{1} (b_{4On} r); $$
$$ F_{O4}^{n} (r) = T_{4O} K_{0} (b_{1On} r);F_{O5}^{n} (r) = T_{5O} K_{0} (b_{n} r);F_{O6}^{n} (r) = \frac{{b_{4On} }}{{b_{n} }}K_{0} (b_{4On} r); $$
$$ \begin{gathered} F_{O7}^{n} (r) = \left\{ {\frac{{i\omega s_{vO} T_{2O} \alpha_{O}^{2} + n^{fO} a_{3O} b_{1On} }}{{(i\omega s_{vO} - \rho^{fO} \omega^{2} )\alpha_{O}^{2} }}} \right\}K_{1} (b_{1On} r); \hfill \\ F_{O8}^{n} (r) = \left\{ {\frac{{i\omega s_{vO} T_{3O} - n^{fO} b_{n} }}{{(i\omega s_{vO} - \rho^{fO} \omega^{2} )}}} \right\}K_{1} (b_{n} r);F_{O9}^{n} (r) = \frac{{i\omega s_{vO} }}{{(i\omega s_{vO} - \rho^{fO} \omega^{2} )}}K_{1} (b_{4On} r); \hfill \\ \end{gathered} $$
$$ F_{O10}^{n} (r) = \mu^{sO} (T_{2O} b_{n} + T_{4O} b_{1On} )K_{1} (b_{1On} r);F_{O11}^{n} (r) = \mu^{sO} b_{n} (T_{3O} + T_{5O} )K_{1} (b_{n} r);F_{O12}^{n} (r) = \mu^{sO} (b_{n} + \frac{{b_{4On}^{2} }}{{b_{n} }})K_{1} (b_{4On} r); $$
$$ \begin{gathered} F_{O13}^{n} (r) = (\lambda^{sO} + 2\mu^{sO} T_{2O} b_{1On} + \frac{{a_{3O} }}{{\alpha_{O}^{2} }})K_{0} (b_{1On} r) + 2\mu^{sO} T_{2O} \frac{1}{r}K_{1} (b_{1On} r); \hfill \\ F_{O14}^{n} (r) = 2\mu^{sO} T_{3O} \left[ {(b_{n} - \frac{1}{{2\mu^{sO} T_{3O} }})K_{0} (b_{n} r) + \frac{1}{r}K_{1} (b_{n} r)} \right]; \hfill \\ F_{O15}^{n} (r) = 2\mu^{sO} \left[ {b_{4On} K_{0} (b_{4On} r) + \frac{1}{r}K_{1} (b_{4On} r)} \right]; \hfill \\ \end{gathered} $$

For the inner soil part,

$$ F_{I1}^{n} (r) = T_{2I} I_{1} (b_{1In} r);F_{I2}^{n} (r) = T_{3I} I_{1} (b_{n} r);F_{I3}^{n} (r) = I_{1} (b_{4In} r); $$
$$ F_{I4}^{n} (r) = T_{4I} I_{0} (b_{1In} r);F_{I5}^{n} (r) = T_{5I} I_{0} (b_{n} r);F_{I6}^{n} (r) = \frac{{b_{4In} }}{{b_{n} }}I_{0} (b_{4In} r); $$
$$ \begin{gathered} F_{I7}^{n} (r) = \left\{ {\frac{{i\omega s_{vI} T_{2I} \alpha_{I}^{2} + n^{fI} a_{3I} b_{1In} }}{{(i\omega s_{vI} - \rho^{fI} \omega^{2} )\alpha_{I}^{2} }}} \right\}I_{1} (b_{1In} r); \hfill \\ F_{I8}^{n} (r) = \left\{ {\frac{{i\omega s_{vI} T_{3I} - n^{fI} b_{n} }}{{(i\omega s_{vI} - \rho^{fI} \omega^{2} )}}} \right\}I_{1} (b_{n} r);F_{I9}^{n} (r) = \frac{{i\omega s_{vI} }}{{(i\omega s_{vI} - \rho^{fI} \omega^{2} )}}I_{1} (b_{4In} r); \hfill \\ \end{gathered} $$
$$ F_{I10}^{n} (r) = \mu^{sI} (T_{2I} b_{n} + T_{4I} b_{1In} )I_{1} (b_{1In} r);F_{I11}^{n} (r) = \mu^{sI} b_{n} (T_{3I} + T_{5I} )I_{1} (b_{n} r);F_{I12}^{n} (r) = \mu^{sI} (b_{n} + \frac{{b_{4In}^{2} }}{{b_{n} }})I_{1} (b_{4In} r); $$
$$ \begin{gathered} F_{I13}^{n} (r) = (\lambda^{sI} + 2\mu^{sI} T_{2I} b_{1In} + \frac{{a_{3I} }}{{\alpha_{I}^{2} }})I_{0} (b_{1In} r) - 2\mu^{sI} T_{2I} \frac{1}{r}I_{1} (b_{1In} r); \hfill \\ F_{I14}^{n} (r) = 2\mu^{sI} T_{3I} \left[ {(b_{n} - \frac{1}{{2\mu^{sI} T_{3I} }})I_{0} (b_{n} r) - \frac{1}{r}I_{1} (b_{n} r)} \right]; \hfill \\ F_{I15}^{n} (r) = 2\mu^{sI} \left[ {b_{4In} I_{0} (b_{4In} r) - \frac{1}{r}I_{1} (b_{4In} r)} \right], \hfill \\ \end{gathered} $$
$$ b_{4kn} = \sqrt {b_{n}^{2} - \frac{1}{{\mu^{sk} }}\left[ {\rho^{sk} \omega^{2} + \frac{{\rho^{fk} \omega^{2} i\omega s_{vk} }}{{(i\omega s_{vk} - \rho^{fk} \omega^{2} )}}} \right]} ,\;k = O\;{\text{or}}\;I. $$

Coefficients in Eq. (41):

$$ P_{1} = - \frac{{w_{g} \frac{{2\pi r_{O} }}{{\mu^{p} J_{p} }}(r_{O}^{2} m_{O} - r_{I}^{2} m_{I} )}}{{\left[ {\frac{4}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }} - \frac{{\rho_{p} }}{{\mu^{p} }}\omega^{2} } \right]}};\;P_{2n} = \alpha_{1n} C_{1n} + \alpha_{2n} C_{2n} - \alpha_{3n} C_{3n} + \alpha_{4n} C_{4n} + \alpha_{5n} C_{5n} + \alpha_{6n} C_{6n} + w_{g} \alpha_{gn} ; $$
$$ P_{3n} = \beta_{1n} C_{1n} + \beta_{2n} C_{2n} - \beta_{3n} C_{3n} + \beta_{4n} C_{4n} + \beta_{5n} C_{5n} + \beta_{6n} C_{6n} + w_{g} \beta_{gn} ; $$
$$ \Delta_{1n} = \frac{{2\upsilon_{p} }}{{(1 - \upsilon_{p} )}}\frac{{4\upsilon_{p} }}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }}b_{n}^{2} - \left[ {b_{n}^{2} - \frac{{(1 - 2\upsilon_{p} )}}{{2\mu^{p} (1 - \upsilon_{p} )}}\rho_{p} \omega^{2} } \right]\left\{ {b_{n}^{2} + \left[ {\frac{4}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }} - \frac{{\rho_{p} }}{{\mu^{p} }}\omega^{2} } \right]} \right\}; $$
$$ \alpha_{1n} = \frac{1}{{\Delta_{1n} }}\frac{{\pi r_{O}^{2} }}{{\mu^{p} J_{p} }}\left\{ {\frac{{4\upsilon_{p} }}{{(1 - \upsilon_{p} )}}b_{n} F_{O10}^{n} (r_{O} ) - \left[ {b_{n}^{2} - \frac{{(1 - 2\upsilon_{p} )}}{{2\mu^{p} (1 - \upsilon_{p} )}}\rho_{p} \omega^{2} } \right]2r_{O} F_{O13}^{n} (r_{O} )} \right\}; $$
$$ \alpha_{2n} = \frac{1}{{\Delta_{1n} }}\frac{{\pi r_{O}^{2} }}{{\mu^{p} J_{p} }}\left\{ {\frac{{4\upsilon_{p} }}{{(1 - \upsilon_{p} )}}b_{n} F_{O11}^{n} (r_{O} ) - \left[ {b_{n}^{2} - \frac{{(1 - 2\upsilon_{p} )}}{{2\mu^{p} (1 - \upsilon_{p} )}}\rho_{p} \omega^{2} } \right]2r_{O} F_{O14}^{n} (r_{O} )} \right\}; $$
$$ \alpha_{3n} = \frac{1}{{\Delta_{1n} }}\frac{{\pi r_{O}^{2} }}{{\mu^{p} J_{p} }}\left\{ {\frac{{4\upsilon_{p} }}{{(1 - \upsilon_{p} )}}b_{n} F_{O12}^{n} (r_{O} ) - \left[ {b_{n}^{2} - \frac{{(1 - 2\upsilon_{p} )}}{{2\mu^{p} (1 - \upsilon_{p} )}}\rho_{p} \omega^{2} } \right]2r_{O} F_{O15}^{n} (r_{O} )} \right\}; $$
$$ \alpha_{4n} = \frac{1}{{\Delta_{1n} }}\frac{{2\pi r_{I} r_{O} }}{{\mu^{p} J_{p} }}\left\{ {\frac{{2\upsilon_{p} }}{{(1 - \upsilon_{p} )}}b_{n} F_{I10}^{n} (r_{I} ) + \left[ {b_{n}^{2} - \frac{{(1 - 2\upsilon_{p} )}}{{2\mu^{p} (1 - \upsilon_{p} )}}\rho_{p} \omega^{2} } \right]r_{I} F_{I13}^{n} (r_{I} )} \right\}; $$
$$ \alpha_{5n} = \frac{1}{{\Delta_{1n} }}\frac{{2\pi r_{I} r_{O} }}{{\mu^{p} J_{p} }}\left\{ {\frac{{2\upsilon_{p} }}{{(1 - \upsilon_{p} )}}b_{n} F_{I11}^{n} (r_{I} ) + \left[ {b_{n}^{2} - \frac{{(1 - 2\upsilon_{p} )}}{{2\mu^{p} (1 - \upsilon_{p} )}}\rho_{p} \omega^{2} } \right]r_{I} F_{I14}^{n} (r_{I} )} \right\}; $$
$$ \alpha_{6n} = \frac{1}{{\Delta_{1n} }}\frac{{2\pi r_{I} r_{O} }}{{\mu^{p} J_{p} }}\left\{ {\frac{{2\upsilon_{p} }}{{(1 - \upsilon_{p} )}}b_{n} F_{I12}^{n} (r_{I} ) + \left[ {b_{n}^{2} - \frac{{(1 - 2\upsilon_{p} )}}{{2\mu^{p} (1 - \upsilon_{p} )}}\rho_{p} \omega^{2} } \right]r_{I} F_{I15}^{n} (r_{I} )} \right\}; $$
$$ \alpha_{gn} = \frac{1}{{\Delta_{1n} }}\frac{{2\pi r_{O} }}{{\mu^{p} J_{p} }}\left\{ \begin{gathered} \left[ {b_{n}^{2} - \frac{{(1 - 2\upsilon_{p} )}}{{2\mu^{p} (1 - \upsilon_{p} )}}\rho_{p} \omega^{2} } \right](r_{O}^{2} F_{O16}^{n} P_{On} - r_{I}^{2} F_{I16}^{n} P_{In} ) \hfill \\ + \frac{{(r_{O}^{2} m_{O} - r_{I}^{2} m_{I} )}}{{\left[ {\frac{4}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }} - \frac{{\rho_{p} }}{{\mu^{p} }}\omega^{2} } \right]}}\frac{{2\upsilon_{p} }}{{(1 - \upsilon_{p} )}}\frac{{4\upsilon_{p} }}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }}\frac{2}{L}\sin (b_{n} L) \hfill \\ \end{gathered} \right\}; $$
$$ \beta_{1n} = \frac{1}{{\Delta_{1n} }}\frac{{(1 - 2\upsilon_{p} )}}{{(1 - \upsilon_{p} )}}\frac{{\pi r_{O} }}{{\mu^{p} A_{p} }}\left\{ {\left\{ {b_{n}^{2} + \left[ {\frac{4}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }} - \frac{{\rho_{p} }}{{\mu^{p} }}\omega^{2} } \right]} \right\}F_{O10}^{n} (r_{O} ) - \frac{{2\upsilon_{p} }}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }}b_{n} 2r_{O} F_{O13}^{n} (r_{O} )} \right\}; $$
$$ \beta_{2n} = \frac{1}{{\Delta_{1n} }}\frac{{(1 - 2\upsilon_{p} )}}{{(1 - \upsilon_{p} )}}\frac{{\pi r_{O} }}{{\mu^{p} A_{p} }}\left\{ {\left\{ {b_{n}^{2} + \left[ {\frac{4}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }} - \frac{{\rho_{p} }}{{\mu^{p} }}\omega^{2} } \right]} \right\}F_{O11}^{n} (r_{O} ) - \frac{{2\upsilon_{p} }}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }}b_{n} 2r_{O} F_{O14}^{n} (r_{O} )} \right\}; $$
$$ \beta_{3n} = \frac{1}{{\Delta_{1n} }}\frac{{(1 - 2\upsilon_{p} )}}{{(1 - \upsilon_{p} )}}\frac{{\pi r_{O} }}{{\mu^{p} A_{p} }}\left\{ {\left\{ {b_{n}^{2} + \left[ {\frac{4}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }} - \frac{{\rho_{p} }}{{\mu^{p} }}\omega^{2} } \right]} \right\}F_{O12}^{n} (r_{O} ) - \frac{{2\upsilon_{p} }}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }}b_{n} 2r_{O} F_{O15}^{n} (r_{O} )} \right\}; $$
$$ \beta_{4n} = \frac{1}{{\Delta_{1n} }}\frac{{(1 - 2\upsilon_{p} )}}{{(1 - \upsilon_{p} )}}\frac{{\pi r_{I} }}{{\mu^{p} A_{p} }}\left\{ {\left\{ {b_{n}^{2} + \left[ {\frac{4}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }} - \frac{{\rho_{p} }}{{\mu^{p} }}\omega^{2} } \right]} \right\}F_{I10}^{n} (r_{I} ) + \frac{{2\upsilon_{p} }}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }}b_{n} 2r_{I} F_{I13}^{n} (r_{I} )} \right\}; $$
$$ \beta_{5n} = \frac{1}{{\Delta_{1n} }}\frac{{(1 - 2\upsilon_{p} )}}{{(1 - \upsilon_{p} )}}\frac{{\pi r_{I} }}{{\mu^{p} A_{p} }}\left\{ {\left\{ {b_{n}^{2} + \left[ {\frac{4}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }} - \frac{{\rho_{p} }}{{\mu^{p} }}\omega^{2} } \right]} \right\}F_{I11}^{n} (r_{I} ) + \frac{{2\upsilon_{p} }}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }}b_{n} 2r_{I} F_{I14}^{n} (r_{I} )} \right\}; $$
$$ \beta_{6n} = \frac{1}{{\Delta_{1n} }}\frac{{(1 - 2\upsilon_{p} )}}{{(1 - \upsilon_{p} )}}\frac{{\pi r_{I} }}{{\mu^{p} A_{p} }}\left\{ {\left\{ {b_{n}^{2} + \left[ {\frac{4}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }} - \frac{{\rho_{p} }}{{\mu^{p} }}\omega^{2} } \right]} \right\}F_{I12}^{n} (r_{I} ) + \frac{{2\upsilon_{p} }}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }}b_{n} 2r_{I} F_{I15}^{n} (r_{I} )} \right\}; $$
$$ \beta_{gn} = \frac{1}{{\Delta_{1n} }}\frac{{2\upsilon_{p} }}{{(1 - \upsilon_{p} )}}\frac{2\pi }{{\mu^{p} J_{p} }}\left\{ \begin{gathered} b_{n} (r_{O}^{2} F_{O16}^{n} P_{On} - r_{I}^{2} F_{I16}^{n} P_{In} ) \hfill \\ + \frac{1}{{b_{n} }}\left\{ {b_{n}^{2} + \left[ {\frac{4}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }} - \frac{{\rho_{p} }}{{\mu^{p} }}\omega^{2} } \right]} \right\}\frac{{(r_{O}^{2} m_{O} - r_{I}^{2} m_{I} )}}{{\left[ {\frac{4}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }} - \frac{{\rho_{p} }}{{\mu^{p} }}\omega^{2} } \right]}}\frac{2}{L}\sin (b_{n} L) \hfill \\ \end{gathered} \right\}. $$

Determined coefficients \(C_{1n}\) ~ \(C_{6n}\) and \(U_{1}\) ~ \(U_{4}\):

$$ C_{1n} = \sum\limits_{j = 1}^{4} {U_{j} \frac{1}{{\gamma_{28n} }}\xi_{jn} } + w_{g} \frac{1}{{\gamma_{28n} }}\xi_{gn} , $$
(52)
$$ C_{2n} = - \sum\limits_{j = 1}^{4} {U_{j} \frac{1}{{\gamma_{28n} }}\delta_{jn} } - w_{g} \frac{1}{{\gamma_{28n} }}\delta_{gn} , $$
(53)
$$ C_{3n} = \sum\limits_{j = 1}^{4} {U_{j} \frac{1}{{\gamma_{28n} }}\frac{1}{{c_{3n} }}\left( {c_{1n} \xi_{jn} - c_{2n} \delta_{jn} } \right)} + w_{g} \frac{1}{{\gamma_{28n} }}\frac{1}{{c_{3n} }}\left( {c_{1n} \xi_{gn} - c_{2n} \delta_{gn} } \right), $$
(54)
$$ C_{4n} = \sum\limits_{j = 1}^{4} {U_{j} \frac{1}{{\gamma_{28n} }}\frac{1}{{\gamma_{21n} }}\left\{ {\gamma_{29n} \xi_{jn} - \gamma_{30n} \delta_{jn} } \right\}} + w_{g} \frac{1}{{\gamma_{28n} }}\frac{1}{{\gamma_{21n} }}\left\{ {\gamma_{29n} \xi_{gn} - \gamma_{30n} \delta_{gn} + \gamma_{28n} (P_{On} - P_{In} )} \right\}, $$
(55)
$$ C_{5n} = - \sum\limits_{j = 1}^{4} {U_{j} \frac{1}{{\gamma_{28n} }}\frac{1}{{\gamma_{20n} }}\left\{ {\gamma_{31n} \xi_{jn} - \gamma_{32n} \delta_{jn} } \right\}} - w_{g} \frac{1}{{\gamma_{28n} }}\frac{1}{{\gamma_{20n} }}\left\{ {\gamma_{31n} \xi_{gn} - \gamma_{32n} \delta_{gn} + \frac{1}{{\gamma_{21n} }}\gamma_{19n} \gamma_{28n} (P_{On} - P_{In} )} \right\}, $$
(56)
$$ C_{6n} = - \sum\limits_{j = 1}^{4} {U_{j} \frac{1}{{\gamma_{28n} }}\frac{1}{{F_{I9}^{n} (r_{I} )}}\left\{ {\gamma_{33n} \xi_{jn} - \gamma_{34n} \delta_{jn} } \right\}} - w_{g} \frac{1}{{\gamma_{28n} }}\frac{1}{{F_{I9}^{n} (r_{I} )}}\left\{ {\gamma_{33n} \xi_{gn} - \gamma_{34n} \delta_{gn} + \frac{1}{{\gamma_{21n} }}\gamma_{28n} \gamma_{g3n} (P_{On} - P_{In} )} \right\}, $$
(57)
$$ U_{1} = - \tilde{p}\frac{1}{R}\frac{1}{{k_{1} e^{{\eta_{1} L}} }}m_{p3} - w_{g} \frac{1}{{k_{1} e^{{\eta_{1} L}} }}m_{g6} , $$
(58)
$$ U_{2} = \tilde{p}\frac{1}{R}\frac{1}{{m_{1} }}(m_{2} m_{p2} - m_{3} m_{p1} ) + w_{g} \frac{1}{{m_{1} }}m_{g5} , $$
(59)
$$ U_{3} = - \tilde{p}\frac{1}{R}m_{p2} - w_{g} \frac{1}{R}m_{g4} , $$
(60)
$$ U_{4} = \tilde{p}\frac{1}{R}m_{p1} + w_{g} \frac{1}{R}m_{g3} , $$
(61)

where

$$ \xi_{jn} = h_{j} \left\{ {\gamma_{26n} - \gamma_{27n} \frac{{\left[ {F_{O2}^{n} (r_{O} ) - F_{O8}^{n} (r_{O} )} \right]}}{{\left[ {F_{O3}^{n} (r_{O} ) - F_{O9}^{n} (r_{O} )} \right]}}} \right\}I_{jn}^{s} + k_{j} \left\{ {\gamma_{23n} - \gamma_{24n} \frac{{\left[ {F_{O2}^{n} (r_{O} ) - F_{O8}^{n} (r_{O} )} \right]}}{{\left[ {F_{O3}^{n} (r_{O} ) - F_{O9}^{n} (r_{O} )} \right]}}} \right\}I_{jn}^{c} ; $$
$$ \delta_{jn} = h_{j} \left\{ {\gamma_{25n} - \gamma_{27n} \frac{{\left[ {F_{O1}^{n} (r_{O} ) - F_{O7}^{n} (r_{O} )} \right]}}{{\left[ {F_{O3}^{n} (r_{O} ) - F_{O9}^{n} (r_{O} )} \right]}}} \right\}I_{jn}^{s} + k_{j} \left\{ {\gamma_{22n} - \gamma_{24n} \frac{{\left[ {F_{O1}^{n} (r_{O} ) - F_{O7}^{n} (r_{O} )} \right]}}{{\left[ {F_{O3}^{n} (r_{O} ) - F_{O9}^{n} (r_{O} )} \right]}}} \right\}I_{jn}^{c} ; $$
$$ I_{jn}^{s} = \frac{2}{L}\int_{0}^{L} {e^{{\eta_{j} z}} \sin (b_{n} z)dz} ;\;I_{jn}^{c} = \frac{2}{L}\int_{0}^{L} {e^{{\eta_{j} z}} \cos (b_{n} z)dz} ;\;j = 1,2,3,4; $$
$$ \xi_{gn} = \left\{ {\gamma_{26n} - \gamma_{27n} \frac{{\left[ {F_{O2}^{n} (r_{O} ) - F_{O8}^{n} (r_{O} )} \right]}}{{\left[ {F_{O3}^{n} (r_{O} ) - F_{O9}^{n} (r_{O} )} \right]}}} \right\}I_{gn}^{s} + \left\{ {\gamma_{23n} - \gamma_{24n} \frac{{\left[ {F_{O2}^{n} (r_{O} ) - F_{O8}^{n} (r_{O} )} \right]}}{{\left[ {F_{O3}^{n} (r_{O} ) - F_{O9}^{n} (r_{O} )} \right]}}} \right\}I_{gn}^{c} + \gamma_{g1n} (P_{On} - P_{In} ); $$
$$ \delta_{gn} = \left\{ {\gamma_{25n} - \gamma_{27n} \frac{{\left[ {F_{O1}^{n} (r_{O} ) - F_{O7}^{n} (r_{O} )} \right]}}{{\left[ {F_{O3}^{n} (r_{O} ) - F_{O9}^{n} (r_{O} )} \right]}}} \right\}I_{gn}^{s} + \left\{ {\gamma_{22n} - \gamma_{24n} \frac{{\left[ {F_{O1}^{n} (r_{O} ) - F_{O7}^{n} (r_{O} )} \right]}}{{\left[ {F_{O3}^{n} (r_{O} ) - F_{O9}^{n} (r_{O} )} \right]}}} \right\}I_{gn}^{c} + \gamma_{g2n} (P_{On} - P_{In} ); $$
$$ I_{gn}^{s} = \alpha_{gn} - \frac{{\frac{{2\pi r_{O} }}{{\mu^{p} J_{p} }}(r_{O}^{2} m_{O} - r_{I}^{2} m_{I} )}}{{\left[ {\frac{4}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }} - \frac{{\rho_{p} }}{{\mu^{p} }}\omega^{2} } \right]}}\frac{2}{L}\int_{0}^{L} {z\sin (b_{n} z)dz} ;\;I_{gn}^{c} = \beta_{gn} - \frac{2}{L}\int_{0}^{L} {\cos (b_{n} z)dz} - P_{On} ; $$
$$ \begin{aligned} \gamma_{g1n} = & \left\{ {\gamma_{26n} - \gamma_{27n} \frac{{\left[ {F_{O2}^{n} (r_{O} ) - F_{O8}^{n} (r_{O} )} \right]}}{{\left[ {F_{O3}^{n} (r_{O} ) - F_{O9}^{n} (r_{O} )} \right]}}} \right\}\frac{1}{{\gamma_{21n} }}\left( {\gamma_{4n} - \frac{1}{{\gamma_{20n} }}\gamma_{5n} \gamma_{19n} } \right) \\ {\kern 1pt} & + \left\{ {\gamma_{23n} - \gamma_{24n} \frac{{\left[ {F_{O2}^{n} (r_{O} ) - F_{O8}^{n} (r_{O} )} \right]}}{{\left[ {F_{O3}^{n} (r_{O} ) - F_{O9}^{n} (r_{O} )} \right]}}} \right\}\frac{1}{{\gamma_{21n} }}\left( {\gamma_{9n} - \frac{1}{{\gamma_{20n} }}\gamma_{10n} \gamma_{19n} } \right); \\ \end{aligned} $$
$$ \begin{aligned} \gamma_{g2n} = & \left\{ {\gamma_{25n} - \gamma_{27n} \frac{{\left[ {F_{O1}^{n} (r_{O} ) - F_{O7}^{n} (r_{O} )} \right]}}{{\left[ {F_{O3}^{n} (r_{O} ) - F_{O9}^{n} (r_{O} )} \right]}}} \right\}\frac{1}{{\gamma_{21n} }}\left( {\gamma_{4n} - \frac{1}{{\gamma_{20n} }}\gamma_{5n} \gamma_{19n} } \right) \\ {\kern 1pt} & + \left\{ {\gamma_{22n} - \gamma_{24n} \frac{{\left[ {F_{O1}^{n} (r_{O} ) - F_{O7}^{n} (r_{O} )} \right]}}{{\left[ {F_{O3}^{n} (r_{O} ) - F_{O9}^{n} (r_{O} )} \right]}}} \right\}\frac{1}{{\gamma_{21n} }}\left( {\gamma_{9n} - \frac{1}{{\gamma_{20n} }}\gamma_{10n} \gamma_{19n} } \right); \\ \end{aligned} $$
$$ \gamma_{g3n} = F_{I7}^{n} (r_{I} ) - \frac{1}{{\gamma_{20n} }}\gamma_{19n} F_{I8}^{n} (r_{I} );\;\gamma_{g4n} = \alpha_{4n} - \frac{1}{{\gamma_{20n} }}\alpha_{5n} \gamma_{19n} - \frac{1}{{F_{I9}^{n} (r_{I} )}}\alpha_{6n} \gamma_{g3n} ; $$
$$ \gamma_{1n} = \alpha_{7n} - \frac{{r_{I} }}{{r_{O} }}\alpha_{6n} \frac{1}{{F_{I9}^{n} (r_{I} )}}F_{O7}^{n} (r_{O} );\;\gamma_{2n} = \alpha_{8n} - \frac{{r_{I} }}{{r_{O} }}\alpha_{6n} \frac{1}{{F_{I9}^{n} (r_{I} )}}F_{O8}^{n} (r_{O} );\;\gamma_{3n} = \alpha_{9n} - \frac{{r_{I} }}{{r_{O} }}\alpha_{6n} \frac{1}{{F_{I9}^{n} (r_{I} )}}F_{O9}^{n} (r_{O} ); $$
$$ \gamma_{4n} = \alpha_{4n} - \alpha_{6n} \frac{1}{{F_{I9}^{n} (r_{I} )}}F_{I7}^{n} (r_{I} );\;\gamma_{5n} = \alpha_{5n} - \alpha_{6n} \frac{1}{{F_{I9}^{n} (r_{I} )}}F_{I8}^{n} (r_{I} );\;\gamma_{6n} = \beta_{7n} + \frac{{r_{I} }}{{r_{O} }}\beta_{6n} \frac{1}{{F_{I9}^{n} (r_{I} )}}F_{O7}^{n} (r_{O} ); $$
$$ \gamma_{7n} = \beta_{8n} + \frac{{r_{I} }}{{r_{O} }}\beta_{6n} \frac{1}{{F_{I9}^{n} (r_{I} )}}F_{O8}^{n} (r_{O} );\;\gamma_{8n} = \beta_{9n} + \frac{{r_{I} }}{{r_{O} }}\beta_{6n} \frac{1}{{F_{I9}^{n} (r_{I} )}}F_{O9}^{n} (r_{O} );\;\gamma_{9n} = \beta_{4n} - \beta_{6n} \frac{1}{{F_{I9}^{n} (r_{I} )}}F_{I7}^{n} (r_{I} ); $$
$$ \gamma_{10n} = \beta_{5n} - \beta_{6n} \frac{1}{{F_{I9}^{n} (r_{I} )}}F_{I8}^{n} (r_{I} );\;\gamma_{11n} = F_{O4}^{n} (r_{O} ) + \frac{{r_{I} }}{{r_{O} }}\frac{1}{{F_{I9}^{n} (r_{I} )}}F_{I6}^{n} (r_{I} )F_{O7}^{n} (r_{O} ); $$
$$ \gamma_{12n} = F_{O5}^{n} (r_{O} ) + \frac{{r_{I} }}{{r_{O} }}\frac{1}{{F_{I9}^{n} (r_{I} )}}F_{I6}^{n} (r_{I} )F_{O8}^{n} (r_{O} );\;\gamma_{13n} = F_{O6}^{n} (r_{O} ) + \frac{{r_{I} }}{{r_{O} }}\frac{1}{{F_{I9}^{n} (r_{I} )}}F_{I6}^{n} (r_{I} )F_{O9}^{n} (r_{O} ); $$
$$ \gamma_{14n} = F_{I4}^{n} (r_{I} ) - \frac{1}{{F_{I9}^{n} (r_{I} )}}F_{I6}^{n} (r_{I} )F_{I7}^{n} (r_{I} );\;\gamma_{15n} = F_{I5}^{n} (r_{I} ) - \frac{1}{{F_{I9}^{n} (r_{I} )}}F_{I6}^{n} (r_{I} )F_{I8}^{n} (r_{I} ); $$
$$ \gamma_{16n} = \frac{{r_{I} }}{{r_{O} }}F_{O1}^{n} (r_{O} ) - \frac{{r_{I} }}{{r_{O} }}\frac{1}{{F_{I9}^{n} (r_{I} )}}F_{I3}^{n} (r_{I} )F_{O7}^{n} (r_{O} );\;\gamma_{17n} = \frac{{r_{I} }}{{r_{O} }}F_{O2}^{n} (r_{O} ) - \frac{{r_{I} }}{{r_{O} }}\frac{1}{{F_{I9}^{n} (r_{I} )}}F_{I3}^{n} (r_{I} )F_{O8}^{n} (r_{O} ); $$
$$ \gamma_{18n} = \frac{{r_{I} }}{{r_{O} }}F_{O3}^{n} (r_{O} ) - \frac{{r_{I} }}{{r_{O} }}\frac{1}{{F_{I9}^{n} (r_{I} )}}F_{I3}^{n} (r_{I} )F_{O9}^{n} (r_{O} );\;\gamma_{19n} = F_{I1}^{n} (r_{I} ) - \frac{1}{{F_{I9}^{n} (r_{I} )}}F_{I3}^{n} (r_{I} )F_{I7}^{n} (r_{I} ); $$
$$ \gamma_{20n} = F_{I2}^{n} (r_{I} ) - \frac{1}{{F_{I9}^{n} (r_{I} )}}F_{I3}^{n} (r_{I} )F_{I8}^{n} (r_{I} );\;\gamma_{21n} = \gamma_{14n} - \frac{1}{{\gamma_{20n} }}\gamma_{15n} \gamma_{19n} ; $$
$$ \gamma_{22n} = \left( {\gamma_{1n} - \frac{1}{{\gamma_{20n} }}\gamma_{5n} \gamma_{16n} } \right) + \frac{1}{{\gamma_{21n} }}\left( {\gamma_{4n} - \frac{1}{{\gamma_{20n} }}\gamma_{5n} \gamma_{19n} } \right)\left( {\gamma_{11n} + \frac{1}{{\gamma_{20n} }}\gamma_{15n} \gamma_{16n} } \right); $$
$$ \gamma_{23n} = \left( {\gamma_{2n} - \frac{1}{{\gamma_{20n} }}\gamma_{5n} \gamma_{17n} } \right) + \frac{1}{{\gamma_{21n} }}\left( {\gamma_{4n} - \frac{1}{{\gamma_{20n} }}\gamma_{5n} \gamma_{19n} } \right)\left( {\gamma_{12n} + \frac{1}{{\gamma_{20n} }}\gamma_{15n} \gamma_{17n} } \right); $$
$$ \gamma_{24n} = (\gamma_{3n} - \frac{1}{{\gamma_{20n} }}\gamma_{5n} \gamma_{18n} ) + \frac{1}{{\gamma_{21n} }}(\gamma_{4n} - \frac{1}{{\gamma_{20n} }}\gamma_{5n} \gamma_{19n} )(\gamma_{13n} + \frac{1}{{\gamma_{20n} }}\gamma_{15n} \gamma_{18n} ); $$
$$ \gamma_{25n} = \left( {\gamma_{6n} + \frac{1}{{\gamma_{20n} }}\gamma_{10n} \gamma_{16n} } \right) - \frac{1}{{\gamma_{21n} }}\left( {\gamma_{9n} - \frac{1}{{\gamma_{20n} }}\gamma_{10n} \gamma_{19n} } \right)\left( {\gamma_{11n} + \frac{1}{{\gamma_{20n} }}\gamma_{15n} \gamma_{16n} } \right); $$
$$ \gamma_{26n} = \left( {\gamma_{7n} + \frac{1}{{\gamma_{20n} }}\gamma_{10n} \gamma_{17n} } \right) - \frac{1}{{\gamma_{21n} }}\left( {\gamma_{9n} - \frac{1}{{\gamma_{20n} }}\gamma_{10n} \gamma_{19n} } \right)\left( {\gamma_{12n} + \frac{1}{{\gamma_{20n} }}\gamma_{15n} \gamma_{17n} } \right); $$
$$ \gamma_{27n} = \left( {\gamma_{8n} + \frac{1}{{\gamma_{20n} }}\gamma_{10n} \gamma_{18n} } \right) - \frac{1}{{\gamma_{21n} }}\left( {\gamma_{9n} - \frac{1}{{\gamma_{20n} }}\gamma_{10n} \gamma_{19n} } \right)\left( {\gamma_{13n} + \frac{1}{{\gamma_{20n} }}\gamma_{15n} \gamma_{18n} } \right); $$
$$ \begin{aligned} \gamma_{28n} = & \left\{ {\gamma_{23n} - \gamma_{24n} \frac{{\left[ {F_{O2}^{n} (r_{O} ) - F_{O8}^{n} (r_{O} )} \right]}}{{\left[ {F_{O3}^{n} (r_{O} ) - F_{O9}^{n} (r_{O} )} \right]}}} \right\}\left\{ {\gamma_{25n} - \gamma_{27n} \frac{{\left[ {F_{O1}^{n} (r_{O} ) - F_{O7}^{n} (r_{O} )} \right]}}{{\left[ {F_{O3}^{n} (r_{O} ) - F_{O9}^{n} (r_{O} )} \right]}}} \right\} \\ & - \left\{ {\gamma_{22n} - \gamma_{24n} \frac{{\left[ {F_{O1}^{n} (r_{O} ) - F_{O7}^{n} (r_{O} )} \right]}}{{\left[ {F_{O3}^{n} (r_{O} ) - F_{O9}^{n} (r_{O} )} \right]}}} \right\}\left\{ {\gamma_{26n} - \gamma_{27n} \frac{{\left[ {F_{O2}^{n} (r_{O} ) - F_{O8}^{n} (r_{O} )} \right]}}{{\left[ {F_{O3}^{n} (r_{O} ) - F_{O9}^{n} (r_{O} )} \right]}}} \right\}; \\ \end{aligned} $$
$$ \gamma_{29n} = \left( {\gamma_{11n} + \frac{1}{{\gamma_{20n} }}\gamma_{15n} \gamma_{16n} } \right) - \frac{1}{{c_{3n} }}\left( {\gamma_{13n} + \frac{1}{{\gamma_{20n} }}\gamma_{15n} \gamma_{18n} } \right)c_{1n} ; $$
$$ \gamma_{30n} = \left( {\gamma_{12n} + \frac{1}{{\gamma_{20n} }}\gamma_{15n} \gamma_{17n} } \right) - \frac{1}{{c_{3n} }}\left( {\gamma_{13n} + \frac{1}{{\gamma_{20n} }}\gamma_{15n} \gamma_{18n} } \right)c_{2n} ; $$
$$ \gamma_{31n} = \gamma_{16n} - \gamma_{18n} \frac{1}{{c_{3n} }}c_{1n} + \frac{1}{{\gamma_{21n} }}\gamma_{19n} \gamma_{29n} ;\;\gamma_{32n} = \gamma_{17n} - \gamma_{18n} \frac{1}{{c_{3n} }}c_{2n} + \frac{1}{{\gamma_{21n} }}\gamma_{19n} \gamma_{30n} ; $$
$$ \gamma_{33n} = \frac{{r_{I} }}{{r_{O} }}F_{O7}^{n} (r_{O} ) - \frac{1}{{c_{3n} }}\frac{{r_{I} }}{{r_{O} }}F_{O9}^{n} (r_{O} )c_{1n} + \frac{1}{{\gamma_{21n} }}F_{I7}^{n} (r_{I} )\gamma_{29n} - \frac{1}{{\gamma_{20n} }}F_{I8}^{n} (r_{I} )\gamma_{31n} ; $$
$$ \gamma_{34n} = \frac{{r_{I} }}{{r_{O} }}F_{O8}^{n} (r_{O} ) - \frac{1}{{c_{3n} }}\frac{{r_{I} }}{{r_{O} }}F_{O9}^{n} (r_{O} )c_{2n} + \frac{1}{{\gamma_{21n} }}F_{I7}^{n} (r_{I} )\gamma_{30n} - \frac{1}{{\gamma_{20n} }}F_{I8}^{n} (r_{I} )\gamma_{32n} ; $$
$$ \gamma_{35n} = \alpha_{1n} - \frac{1}{{c_{3n} }}\alpha_{3n} c_{1n} + \frac{1}{{\gamma_{21n} }}\alpha_{4n} \gamma_{29n} - \frac{1}{{\gamma_{20n} }}\alpha_{5n} \gamma_{31n} - \frac{1}{{F_{I9}^{n} (r_{I} )}}\alpha_{6n} \gamma_{33n} ; $$
$$ \gamma_{36n} = \alpha_{2n} - \frac{1}{{c_{3n} }}\alpha_{3n} c_{2n} + \frac{1}{{\gamma_{21n} }}\alpha_{4n} \gamma_{30n} - \frac{1}{{\gamma_{20n} }}\alpha_{5n} \gamma_{32n} - \frac{1}{{F_{I9}^{n} (r_{I} )}}\alpha_{6n} \gamma_{34n} ; $$
$$ \alpha_{7n} = \alpha_{1n} + F_{O1}^{n} (r_{O} );\;\alpha_{8n} = \alpha_{2n} + F_{O2}^{n} (r_{O} );\;\alpha_{9n} = \alpha_{3n} + F_{O3}^{n} (r_{O} ); $$
$$ \beta_{7n} = F_{O4}^{n} (r_{O} ) - \beta_{1n} ;\;\beta_{8n} = F_{O5}^{n} (r_{O} ) - \beta_{2n} ;\;\beta_{9n} = F_{O6}^{n} (r_{O} ) - \beta_{3n} ; $$
$$ c_{1n} = F_{O1}^{n} (r_{O} ) - F_{O7}^{n} (r_{O} );\;c_{2n} = F_{O2}^{n} (r_{O} ) - F_{O8}^{n} (r_{O} );\;c_{3n} = F_{O3}^{n} (r_{O} ) - F_{O9}^{n} (r_{O} ); $$
$$ m_{1} = \left( {h_{2} \eta_{2} - k_{2} h_{1} \eta_{1} \frac{1}{{k_{1} }}} \right)e^{{\eta_{2} L}} ;\;m_{2} = \left( {h_{3} \eta_{3} - k_{3} h_{1} \eta_{1} \frac{1}{{k_{1} }}} \right)e^{{\eta_{3} L}} ;\;m_{3} = \left( {h_{4} \eta_{4} - k_{4} h_{1} \eta_{1} \frac{1}{{k_{1} }}} \right)e^{{\eta_{4} L}} ; $$
$$ m_{4} = X_{2} - X_{1} \frac{1}{{k_{1} e^{{\eta_{1} L}} }}k_{2} e^{{\eta_{2} L}} ;\;m_{5} = X_{3} - X_{1} \frac{1}{{k_{1} e^{{\eta_{1} L}} }}k_{3} e^{{\eta_{3} L}} ;\;m_{6} = X_{4} - X_{1} \frac{1}{{k_{1} e^{{\eta_{1} L}} }}k_{4} e^{{\eta_{4} L}} ; $$
$$ m_{7} = \lambda_{2} - \lambda_{1} \frac{1}{{k_{1} e^{{\eta_{1} L}} }}k_{2} e^{{\eta_{2} L}} ;\;m_{8} = \lambda_{3} - \lambda_{1} \frac{1}{{k_{1} e^{{\eta_{1} L}} }}k_{3} e^{{\eta_{3} L}} ;\;m_{9} = \lambda_{4} - \lambda_{1} \frac{1}{{k_{1} e^{{\eta_{1} L}} }}k_{4} e^{{\eta_{4} L}} ; $$
$$ X_{j} = h_{j} \eta_{j} + \sum\limits_{n = 1}^{\infty } {\frac{1}{{\gamma_{28n} }}b_{n} \left\{ {\gamma_{35n} \xi_{jn} - \gamma_{36n} \delta_{jn} } \right\}} ;\;j = 1,2,3,4; $$
$$ m_{p1} = m_{1} (m_{1} m_{5} - m_{2} m_{4} )\frac{{(1 - 2\upsilon_{p} )}}{{2\mu^{p} A_{p} }};\;m_{p2} = m_{1} (m_{1} m_{6} - m_{3} m_{4} )\frac{{(1 - 2\upsilon_{p} )}}{{2\mu^{p} A_{p} }}; $$
$$ m_{p3} = \frac{1}{{m_{1} }}k_{2} e^{{\eta_{2} L}} (m_{2} m_{p2} - m_{3} m_{p1} ) - k_{3} e^{{\eta_{3} L}} m_{p2} + k_{4} e^{{\eta_{4} L}} m_{p1} ; $$
$$ m_{g1} = m_{1} \left( {X_{g} - X_{1} \frac{1}{{k_{1} e^{{\eta_{1} L}} }}} \right) - m_{4} \left( {Y_{g} - h_{1} \eta_{1} \frac{1}{{k_{1} }}} \right);\;m_{g2} = m_{1} \lambda_{1} \frac{1}{{k_{1} e^{{\eta_{1} L}} }} + m_{7} \left( {Y_{g} - h_{1} \eta_{1} \frac{1}{{k_{1} }}} \right); $$
$$ m_{g3} = m_{g2} (m_{1} m_{5} - m_{2} m_{4} ) + m_{g1} (m_{1} m_{8} - m_{2} m_{7} );\;m_{g4} = m_{g2} (m_{1} m_{6} - m_{3} m_{4} ) + m_{g1} (m_{1} m_{9} - m_{3} m_{7} ); $$
$$ m_{g5} = \frac{1}{R}m_{2} m_{g4} - \frac{1}{R}m_{3} m_{g3} + \left( {Y_{g} - h_{1} \eta_{1} \frac{1}{{k_{1} }}} \right);\;m_{g6} = \frac{1}{{m_{1} }}k_{2} e^{{\eta_{2} L}} m_{g5} - \frac{1}{R}k_{3} e^{{\eta_{3} L}} m_{g4} + \frac{1}{R}k_{4} e^{{\eta_{4} L}} m_{g3} - 1; $$
$$ R = (m_{1} m_{8} - m_{2} m_{7} )(m_{1} m_{6} - m_{3} m_{4} ) - (m_{1} m_{9} - m_{3} m_{7} )(m_{1} m_{5} - m_{2} m_{4} ); $$
$$ X_{g} = \frac{{\frac{{2\pi r_{O} }}{{\mu^{p} J_{p} }}(r_{O}^{2} m_{O} - r_{I}^{2} m_{I} )}}{{\left[ {\frac{4}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }} - \frac{{\rho_{p} }}{{\mu^{p} }}\omega^{2} } \right]}} - \sum\limits_{n = 1}^{\infty } {b_{n} \left\{ {\frac{1}{{\gamma_{28n} }}\left\{ {\gamma_{35n} \xi_{gn} - \gamma_{36n} \delta_{gn} } \right\} + \frac{1}{{\gamma_{21n} }}\gamma_{g4n} (P_{On} - P_{In} ) + \alpha_{gn} } \right\}} ; $$

\(Y_{g} = \frac{{\frac{{2\pi r_{O} }}{{\mu^{p} J_{p} }}(r_{O}^{2} m_{O} - r_{I}^{2} m_{I} )}}{{\left[ {\frac{4}{{(1 - 2\upsilon_{p} )}}\frac{{A_{p} }}{{J_{p} }} - \frac{{\rho_{p} }}{{\mu^{p} }}\omega^{2} } \right]}};\) \(\tilde{p}\) represents the external load amplitude of the pile top.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Xu, Z. & Deng, C. Kinematic responses of a pipe pile embedded in a poroelastic soil to seismic P waves. Acta Geotech. 17, 5533–5556 (2022). https://doi.org/10.1007/s11440-022-01517-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-022-01517-5

Keywords

Navigation