Skip to main content
Log in

Bounding surface plasticity model with reversal surfaces for the monotonic and cyclic shearing of sands

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The paper describes the formulation and simulative potential of a constitutive model for monotonic and cyclic shearing of sands. It is a SANISAND-type model that does not consider a (small) yield surface and employs the last stress reversal point for defining both the elastic and the plastic strain rates. Emphasis is put on the updating of the stress reversal point to avoid stress-strain overshooting. It incorporates a fabric evolution index that scales the plastic modulus targeting strain accumulation with cycles and a post-liquefaction formulation affecting the dilatancy function. The paper includes the calibration process of the 14 model parameters. Model performance is verified against a large database of monotonic and cyclic shearing tests on Toyoura and Ottawa-F65 sands. To complement sand-specific data, empirical relations are used for validating the shear modulus at small strains, its degradation with cyclic shear strain, the corresponding increase in hysteretic damping, the evolving rates of volumetric and shear strain accumulation with cycles and the effect of relative density and stress level on liquefaction resistance. Model verification shows that a single set of sand-specific parameters may be used for both monotonic and cyclic shearing of any strain level, irrespective of stress level and relative density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Andrianopoulos KI, Papadimitriou AG, Bouckovalas GD (2010) Bounding surface plasticity model for the seismic liquefaction analysis of geostructures. Soil Dyn Earthq Eng 30:895–911. https://doi.org/10.1016/j.soildyn.2010.04.001

    Article  MATH  Google Scholar 

  2. Arulmoli K, Muraleetharan KK, Hossain MM, Fruth LS (1992) VELACS: Verification of liquefaction analysis by centrifuge studies, Laboratory testing program - Soil Data Report. The Earth Techn Corp, Irvine, CA

  3. Barrero AR, Taiebat M, Dafalias YF (2020) Modeling cyclic shearing of sands in the semifluidized state. Int J Numer Anal Methods Geomech 44:371–388. https://doi.org/10.1002/nag.3007

    Article  Google Scholar 

  4. Bastidas AMP (2016) Ottawa F-65 sand characterization. PhD Thesis. University of California, Davis.

    Google Scholar 

  5. Bauer, E., & Wu, W. (1993). A hypoplastic model for granular soils under cyclic loading. In Proceed. of the Int. Workshop on Modern Approaches to Plasticity, pp 247–258

    Book  Google Scholar 

  6. Been K, Jefferies MG (1985) A state parameter for sands. Géotechnique 35:99–112. https://doi.org/10.1680/geot.1985.35.2.99

    Article  Google Scholar 

  7. Bouckovalas G, Whitman RV, Marr WA (1984) Permanent displacement of sand with cyclic loading. J Geotech Eng 110:1606–1623. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:11(1606)

    Article  Google Scholar 

  8. Boulanger RW, Ziotopoulou K (2013) Formulation of a sand plasticity plane-strain model for earthquake engineering applications. Soil Dyn Earthq Eng 53:254–267. https://doi.org/10.1016/j.soildyn.2013.07.006

    Article  Google Scholar 

  9. Chaloulos YK, Papadimitriou AG, Dafalias YF (2019) Fabric effects on strip footing loading of anisotropic sand. J Geotech Geoenviron Eng 145(10):04019068-1-04019068-15. https://doi.org/10.1061/(asce)gt.1943-5606.0002082

    Article  Google Scholar 

  10. Cheng Z, Detournay C (2021) Formulation, validation and application of a practice-oriented two-surface plasticity sand model. Comput Geotech 132(2021). https://doi.org/10.1016/j.compgeo.2020.103984

    Article  Google Scholar 

  11. Dafalias YF (1986) Bounding surface plasticity. i: mathematical foundation and hypoplasticity. J Eng Mech 112:966–987. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:9(966)

    Article  Google Scholar 

  12. Dafalias YF, Manzari MT (2004) Simple plasticity sand model accounting for fabric change effects. J Eng Mech 130:622–634. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(622)

    Article  Google Scholar 

  13. Dafalias YF, Popov EP (1975) A model of nonlinearly hardening materials for complex loading. Acta Mech 21:173–192. https://doi.org/10.1007/BF01181053

    Article  MATH  Google Scholar 

  14. Dafalias YF, Taiebat M (2016) SANISAND-Z: zero elastic range sand plasticity model. Géotechnique 66:999–1013. https://doi.org/10.1680/jgeot.15.P.271

    Article  Google Scholar 

  15. Darendeli M (2001) Development of a new family of normalized modulus reduction and material damping curves. PhD Thesis. The University of Texas at Austin

  16. Duku PM, Stewart JP, Whang DH, Yee E (2008) Volumetric strains of clean sands subject to cyclic loads. J Geotech Geoenviron Eng 134:1073–1085. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:8(1073)

    Article  Google Scholar 

  17. Duque J, Yang M, Fuentes W, Masin D, Taiebat M (2021) Characteristic limitations of advanced plasticity and hypoplasticity models for cyclic loading of sands. Acta Geotech. https://doi.org/10.1007/s11440-021-01418-z

    Article  Google Scholar 

  18. Van Eekelen HAM (1980) Isotropic yield surfaces in three dimensions for use in soil mechanics. Int J Numer Anal Methods Geomech 4:89–101. https://doi.org/10.1002/nag.1610040107

    Article  MATH  Google Scholar 

  19. El Ghoraiby M, Park H, Manzari M (2018) PRJ-1783: LEAP-2017 GWU Laboratory Tests. DesignSafe-CI/NHERI, Dataset. https://doi.org/10.17603/DS2210X

  20. Elgamal A, Yang Z, Parra E, Ragheb A (2003) Modeling of cyclic mobility in saturated cohesionless soils. Int J Plast 19:883–905. https://doi.org/10.1016/S0749-6419(02)00010-4

    Article  MATH  Google Scholar 

  21. Hardin BO (1978) The nature of stress-strain behavior for soils. In Proceed. of the ASCE Spec. Conference on Earth Engrg and Soil Dyn, State-of-the-art Rep, ASCE, New York, pp 3–90

  22. Idriss IM, Boulanger RW (2008) Soil liquefaction during earthquakes. Monograph MNO-12. Earthquake Engineering Research Institute, Oakland, CA

  23. Ishihara K, Tsukamoto Y (2004) Cyclic strength of imperfectly saturated sands and analysis of liquefaction. Proc Japan Acad Ser B 80:372–391. https://doi.org/10.2183/pjab.80.372

    Article  Google Scholar 

  24. Kammerer AM, Wu J, Pestana JM, Riemer M, Seed RB (2000) Cyclic simple shear testing of Nevada sand for PEER center project 2051999. Geotechnical Engineering Rep. No. UCBGT-2000-01. Univ. of California, Berkeley, CA

  25. Kolymbas D (2012) Barodesy: a new hypoplastic approach. Int J Numer Anal Methods Geomech 36:1220–1240. https://doi.org/10.1002/nag.1051

    Article  Google Scholar 

  26. Li XS, Dafalias YF (2000) Dilatancy for cohesionless soils. Geotechnique 50:449–460. https://doi.org/10.1680/geot.2000.50.4.449

    Article  Google Scholar 

  27. Li Z, Liu H (2020) An isotropic-kinematic hardening model for cyclic shakedown and ratcheting of sand. Soil Dyn Earthq Eng 138:106329. https://doi.org/10.1016/j.soildyn.2020.106329

    Article  Google Scholar 

  28. Li XS, Wang Y (1998) Linear representation of steady-state line for sand. J Geotech Geoenvironmental Eng 124:1215–1217. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1215)

    Article  Google Scholar 

  29. Limnaiou TG, Papadimitriou AG Verification of bounding surface plasticity model with reversal surfaces for the analysis of liquefaction problems. Soil Dyn Earthq Eng (under review)

  30. Liu HY, Abell JA, Diambra A, Pisanò F (2019) Modelling the cyclic ratcheting of sands through memory-enhanced bounding surface plasticity. Géotechnique 69:783–800. https://doi.org/10.1680/jgeot.17.P.307

    Article  Google Scholar 

  31. Liu H, Diambra A, Abell JA, Pisanò F (2020) Memory-enhanced plasticity modeling of sand behavior under undrained cyclic loading. J Geotech Geoenviron Eng 146:04020122. https://doi.org/10.1061/(asce)gt.1943-5606.0002362

    Article  Google Scholar 

  32. Lombardi D, Bhattacharya S, Hyodo M, Kaneko T (2014) Undrained behaviour of two silica sands and practical implications for modelling SSI in liquefiable soils. Soil Dyn Earthq Eng 66:293–304. https://doi.org/10.1016/j.soildyn.2014.07.010

    Article  Google Scholar 

  33. Loukidis D, Salgado R (2009) Modeling sand response using two-surface plasticity. Comput Geotech 36:166–186. https://doi.org/10.1016/j.compgeo.2008.02.009

    Article  Google Scholar 

  34. Manzari MT, Dafalias YF (1997) A critical state two-surface plasticity model for sands. Géotechnique 47:255–272. https://doi.org/10.1680/geot.1997.47.2.255

    Article  Google Scholar 

  35. Manzari, M.T., ElGhoraiby, M.A. (2021). On Validation of a Two-Surface Plasticity Model for Soil Liquefaction Analysis. In: Barla, M., Di Donna, A., Sterpi, D. (eds) Challenges and Innovations in Geomechanics. IACMAG 2021. Lecture Notes in Civil Engineering, vol 125. Springer, Cham. https://doi.org/10.1007/978-3-030-64514-4_76

  36. Masing G (1926) Eigenspannungen und verfestigung beim messing (Self stretching and hardening for brass) (in German). In Proceed. of 2nd International Congress of Applied Mechanics. Zurich, Switzerland, pp 332–335

  37. McAllister G, Taiebat M, Ghofrani A, Chen L, Arduino P (2015) Nonlinear site response analyses and high frequency dilation pulses. In Proceed. of 68th Canadian Geotechnical Conference, Quebec, QC, Canada

  38. Mroz Z, Zienkiewicz O (1984) Uniform formulation of constitutive equations for clays and sand. In: Desai C, Gallagher R (eds) Mechanics of engineering materials. Wiley, United States, pp 415–450

    Google Scholar 

  39. Mróz Z, Norris VA, Zienkiewicz OC (1979) Application of an anisotropic hardening model in the analysis of elasto–plastic deformation of soils. Géotechnique 29:1–34. https://doi.org/10.1680/geot.1979.29.1.1

    Article  Google Scholar 

  40. Mulilis P, Arulanandan K, Mitchell JK et al (1977) Effects of sample preparation on sand liquefaction. J Geotech Eng Div 103:91–108

    Article  Google Scholar 

  41. Niemunis A, Herle I (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mech Cohesive-frictional Mater 2:279–299. https://doi.org/10.1002/(SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8

    Article  Google Scholar 

  42. Papadimitriou AG, Bouckovalas GD (2002) Plasticity model for sand under small and large cyclic strains: a multiaxial formulation. Soil Dyn Earthq Eng 22:191–204. https://doi.org/10.1016/S0267-7261(02)00009-X

    Article  Google Scholar 

  43. Papadimitriou AG, Bouckovalas GD, Dafalias YF (2001) Plasticity model for sand under small and large cyclic strains. J Geotech Geoenvironmental Eng 127:973–983. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:11(973)

    Article  Google Scholar 

  44. Papadimitriou AG, Chaloulos YK, Dafalias YF (2019) A fabric-based sand plasticity model with reversal surfaces within anisotropic critical state theory. Acta Geotech 14:253–277. https://doi.org/10.1007/s11440-018-0751-5

    Article  Google Scholar 

  45. Papadimitriou AG, Chaloulos YK, Dimoula MK, Dafalias YF (2021) Importance of sand fabric anisotropy on fault rupture-foundation interaction. In: Barla M, Di Donna A, Sterpi D (eds) Challenges and innovations in geomechanics. Springer, Cham, pp 731–738. https://doi.org/10.1007/978-3-030-64514-4_77

    Chapter  Google Scholar 

  46. Petalas AL, Dafalias YF, Papadimitriou AG (2019) SANISAND-FN: an evolving fabric-based sand model accounting for stress principal axes rotation. Int J Numer Anal Methods Geomech 43:97–123. https://doi.org/10.1002/nag.2855

    Article  Google Scholar 

  47. Pradhan TBS, Tatsuoka F, Horii N (1988) Strength and deformation characteristics of sand in torsional simple shear. Soils Found 28:131–148. https://doi.org/10.3208/sandf1972.28.3_131

    Article  Google Scholar 

  48. Ramberg W, Osgood WR (1943) Description of stress-strain curve by three parameters. Technical Note 902, National Advisory Committee for Aeronautics, Washington, D.C.

  49. Rowe PW (1962) The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc R Soc London Ser A Math Phys Sci 269:500–527. https://doi.org/10.1098/rspa.1962.0193

    Article  Google Scholar 

  50. Schofield A, Wroth P (1968) Critical state soil mechanics. McGraw-Hill, USA

    Google Scholar 

  51. Shahnazari H, Towhata I (2002) Torsion shear tests on cyclic stress-dilatancy relationship of sand. Soils Found 42:105–119. https://doi.org/10.3208/sandf.42.105

    Article  Google Scholar 

  52. Shibuya S, Park C-S, Tatsuoka F et al (1994) The significance of local lateral-strain measurement of soil specimens for a wide range of strain. Soils Found 34:95–105. https://doi.org/10.3208/sandf1972.34.2_95

    Article  Google Scholar 

  53. Silver ML, Seed HB (1971) Volume changes in sands due to cyclic loading. J Soil Mech Found Div 97(9):1171–1182

    Article  Google Scholar 

  54. Stamatopoulos CA, Bouckovalas G, Whitman RV (1991) Analytical prediction of earthquake-induced permanent deformations. J Geotech Eng 117:1471–1491. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:10(1471)

    Article  Google Scholar 

  55. Taborda DMG, Zdravković L, Kontoe S, Potts DM (2014) Computational study on the modification of a bounding surface plasticity model for sands. Comput Geotech 59:145–160. https://doi.org/10.1016/j.compgeo.2014.03.005

    Article  Google Scholar 

  56. Taiebat M, Dafalias YF (2008) SANISAND: simple anisotropic sand plasticity model. Int J Numer Anal Methods Geomech 32:915–948. https://doi.org/10.1002/nag.651

    Article  MATH  Google Scholar 

  57. Tasiopoulou P, Gerolymos N (2016) Constitutive modeling of sand: formulation of a new plasticity approach. Soil Dyn Earthq Eng 82:205–221. https://doi.org/10.1016/j.soildyn.2015.12.014

    Article  Google Scholar 

  58. Tasiopoulou P, Ziotopoulou K, Humire F, Giannakou A, Chacko J, Travasarou T (2020) Development and implementation of semiempirical framework for modeling postliquefaction shear deformation accumulation in sands. J Geotech Geoenviron Eng 146:04019120. https://doi.org/10.1061/(asce)gt.1943-5606.0002179

    Article  Google Scholar 

  59. Tatsuoka F, Teachavorasinskun S, Dong J, Kohata Y, Sato T (1994) Importance of measuring local strains in cyclic triaxial tests on granular materials. In: Ebelhar RJ, Drnevich VP, Kutter BL, editors. Dynamics geotechnical testing II. ASTM. pp 288–302.

  60. Toyota H, Takada S (2017) Variation of liquefaction strength induced by monotonic and cyclic loading histories. J Geotech Geoenviron Eng 143:04016120. https://doi.org/10.1061/(asce)gt.1943-5606.0001634

    Article  Google Scholar 

  61. Tsaparli V, Kontoe S, Taborda DMG, Potts DM (2020) A case study of liquefaction: demonstrating the application of an advanced model and understanding the pitfalls of the simplified procedure. Géotechnique 70:538–558. https://doi.org/10.1680/jgeot.18.P.263

    Article  Google Scholar 

  62. Vaid YP, Sivathayalan S (1996) Static and cyclic liquefaction potential of Fraser Delta sand in simple shear and triaxial tests. Can Geotech J 33:281–289. https://doi.org/10.1139/t96-007

    Article  Google Scholar 

  63. Vasko A (2015) An investigation into the behavior of Ottawa Sand through Monotonic and Cyclic Shear Tests. Masters Thesis. The George Washington University

  64. Vasko A, El Ghoraiby M, Manzari M (2018) PRJ-1780: LEAP-GWU-2015 Laboratory Tests. DesignSafe-CI/NHERI, Dataset. https://doi.org/10.17603/DS2TH7Q

  65. Verdugo R, Ishihara K (1996) The steady state of sandy soils. Soils Found 36:81–91. https://doi.org/10.3208/sandf.36.2_81

    Article  Google Scholar 

  66. Vucetic M (1994) Cyclic threshold shear strains in soils. J Geotech Eng 120:2208–2228. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2208)

    Article  Google Scholar 

  67. Vucetic M, Dobry R (1991) Effect of soil plasticity on cyclic response. J Geotech Eng 117:89–107. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(89)

    Article  Google Scholar 

  68. Wang Z, Dafalias YF, Shen C (1990) Bounding surface hypoplasticity model for sand. J Eng Mech 116:983–1001. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:5(983)

    Article  Google Scholar 

  69. Wang H, Koseki J, Sato T (2014) Resistance against liquefaction of unsaturated Toyoura sand and Inagi sand. Bulletin of ERS 47:3-14. Institute of Industrial Science, University of Tokyo

  70. Wicaksono RI, Kuwano R (2009) Small strain shear stiffness of Toyoura sand obtained from various wave measurement techniques. Bulletin of ERS 42:107–120. Institute of Industrial Science, University of Tokyo

    Google Scholar 

  71. Wu J, Kammerer A, Riemer M, Seed RB, Pestana JM (2004) Laboratory study of liquefaction triggering criteria. In: 13th World Conference on Earthquake Engineering Vancouver, B .C., Canada. Vancouver, B.C., Canada, August 1–6

  72. Xue L, Yu J, Pan J, Wang R, Zhang JM (2021) Three-dimensional anisotropic plasticity model for sand subjected to principal stress value change and axes rotation. Int J Numer Anal Methods Geomech 45:353–381. https://doi.org/10.1002/nag.3159

    Article  Google Scholar 

  73. Yamashita S, Toki S (1993) Effects of fabric anisotropy of sand on cyclic undrained triaxial and torsional strengths. Soils Found 33:92–104. https://doi.org/10.3208/sandf1972.33.3_92

    Article  Google Scholar 

  74. Yang M, Taiebat M, Dafalias YF (2020) SANISAND-MSf: a sand plasticity model with memory surface and semifluidised state. Géotechnique. https://doi.org/10.1680/jgeot.19.p.363

    Article  Google Scholar 

  75. Yoshimine M, Ishihara K, Vargas W (1998) Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand. Soils Found 38:179–188. https://doi.org/10.3208/sandf.38.3_179

    Article  Google Scholar 

  76. Zhang W, Lim K, Ghahari SF, Arduino P, Taciroglu E (2021) On the implementation and validation of a three-dimensional pressure-dependent bounding surface plasticity model for soil nonlinear wave propagation and soil-structure interaction analyses. Int J Numer Anal Methods Geomech 45:1091–1119. https://doi.org/10.1002/nag.3194

    Article  Google Scholar 

  77. Zhang JM, Wang G (2012) Large post-liquefaction deformation of sand, part I: physical mechanism, constitutive description and numerical algorithm. Acta Geotech 7:69–113. https://doi.org/10.1007/s11440-011-0150-7

    Article  Google Scholar 

  78. Zhang JM (1997) Cyclic critical stress state theory of sand with its application to geotechnical problems. PhD Thesis. Tokyo Institute of Technology

Download references

Acknowledgements

This scientific paper was supported by the Onassis Foundation-Scholarship ID: G ZO 013-1/2018-2019, awarded to the first author. In addition, the help of Dr. Yannis K. Chaloulos is gratefully acknowledged, for introducing the first author to the use of dynamic link library and to the problem of stress–strain overshooting. Finally, the authors express their gratitude to the 3 anonymous reviewers for their help in upgrading the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taxiarchoula G. Limnaiou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This section presents Table 3 and Table 4 that summarize the information about the laboratory tests employed in the model validation process, i.e., in Figs. 7 through 19. This information includes the sand name, the type of test and its initial conditions in terms of void ratio eo, axial effective stress σa,o, mean effective stress po and state parameter ψο.

See Tables 3 and 4.

Table 3 Initial conditions of tests used in model validation process against experimental data
Table 4 Initial conditions of tests used in model validation process against empirical relations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limnaiou, T.G., Papadimitriou, A.G. Bounding surface plasticity model with reversal surfaces for the monotonic and cyclic shearing of sands. Acta Geotech. 18, 235–263 (2023). https://doi.org/10.1007/s11440-022-01529-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-022-01529-1

Keywords

Navigation