Skip to main content
Log in

Comprehensive laboratory study on stress–strain of granular soils at constant global void ratio: combined effects of fabrics and silt content

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The published literature has revealed conflicting results regarding the effect of low plastic fines fraction (Ip ≤ 5.0%) on the mechanical behavior of sandy soils. For this reason, the use of different sample initial structures as (initial relative density approach, global void ratio index approach, etc.) could explain these different mechanical responses of granular materials. Thus, it is necessary to evaluate the quantitative aspect of the low plastic fines effects on the undrained monotonic response of sand-silt mixtures using the global void ratio approach. To achieve this goal, an experimental testing program through controlled monotonic triaxial tests was carried out on reconstituted saturated Chlef sand containing from 0 to 50% silt with an interval of 10% at three global void ratios (e = 0.64, 0.66 and 0.68) and subjected to constant confining pressure (σ'3 = 100 kPa). The different samples were reconstituted using two different preparation techniques: DFP and MT. The obtained results show that the low plastic fines content appears as a very relevant parameter in the characterization of the mechanical response of sand-silt mixture samples reconstituted at constant global void ratios, where the steady state shear strength and instability shear strength decreased with the increase in low plastic fines content up to the limiting fines contents (Fc = 40% and Fc = 10%) considering both studied initial structures (Dry funnel pluviation and Moist tamping), respectively. Beyond these thresholds fines contents, a reverse trend was observed for all parameters under study. Moreover, the test results indicate that the brittleness index, flow potential (Vf), friction index, equivalent void ratio (e*) and equivalent relative density (Dr*) could be considered as reliable parameters in the prediction of the mechanical behavior of the silty sand soils under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

C c :

Coefficient of curvature

C u :

Coefficient of uniformity

D 10 :

Effective grain size

D 50 :

Mean grain size

D r :

Initial relative density

D r*:

Equivalent relative density

IB:

Brittleness index

e max :

Maximum global void ratio

e min :

Minimum global void ratio

e i :

Initial global void ratio

e f :

Inter-fine void ratio

e*f :

Equivalent inter-fine void ratio

e g :

Intergranular void ratio

e*:

Equivalent void ratio

F c :

Fines content

F cthre :

Threshold fines content

FI:

Friction index

G s :

Specific gravity of solids

Ip:

Plasticity index

q :

Deviator stress

p′:

Effective mean pressure

q cs :

Critical state shear strength

q ins :

Shear strength at instability line

Q ss :

Quasi-steady state

Pcs :

Critical state effective mean pressure

Pins :

Effective mean pressure at instability line

σ ' 3 :

Initial confining pressure

χ :

Particle size ratio

Vf:

Flow potential

ϕ cs :

Critical state friction angle

Δϕ cs :

Difference of critical state friction angle between the DFP samples and MT samples

ϕ ins :

Friction angle at instability line

m :

Mass of samples

B :

Skempton’s pore pressure parameter

A, C and E :

Constants of equation

R 2 :

Coefficient of determination

DFP:

Dry funnel pluviation

MT:

Moist tamping

W :

Water content

D :

Diameter of the sample

H :

Height of the sample

H/D :

Height to diameter ratio of the sample

References

  1. Akhila M, Rangaswamy K, Sankar N (2018) Undrained response and liquefaction resistance of sand-silt mixtures. Geotech Geol Eng 37:2729–2745

    Article  Google Scholar 

  2. ASTM D 4253 (2002) Standard test method for maximum index density and unit weight of soils using a vibratory table. Annual Book of ASTM Standards. American Society for Testing and Materials, West Conshohocken

  3. Belkhatir M, Schanz T, Arab A, Della N, Kadri A (2014) Insight into the effects of gradation on the pore pressure generation of sand-silt mixtures. Geotech Test J 37(5):1–10

    Article  Google Scholar 

  4. Benahmed N, Nguyen TK, Hicher PY, Nicolas M (2014) An experimental investigation into the effects of low plastic fines content on the behaviour of sand/silt mixtures. Eur J Environ Civ Eng. https://doi.org/10.1080/19648189.2014.939304

    Article  Google Scholar 

  5. Bishop AW (1976) Progressive failure: with special reference to mechanism causing it. Proc Geotech Conf 2:142–150

    Google Scholar 

  6. Chang CS, Meidani M, Deng Y (2017) A compression model for sand-silt mixtures based on the concept of active and inactive voids. Acta Geotech 12:1301–1317. https://doi.org/10.1007/s11440-017-0598-1

    Article  Google Scholar 

  7. Cherif Taiba A, Mahmoudi Y, Belkhatir M, Kadri A, Schanz T (2016) Insight into the effect of granulometric characteristics on static liquefation sucseptibility of silty sand soils. Geotech Geol Eng. https://doi.org/10.1007/s10706-015-9951-z

    Article  Google Scholar 

  8. Cherif Taiba A, Mahmoudi Y, Belkhatir M, Baille W (2019) Assessment of the correlation between grain angularity parameter and friction index of sand containing low plastic fines. Geomech Geoeng Int J 16:133–149. https://doi.org/10.1080/17486025.2019.1648881

    Article  Google Scholar 

  9. Cherif Taiba A, Mahmoudi Y, Azaiez H, Belkhatir M, Baille W (2021) Predicting the saturated hydraulic conductivity of particulate assemblies based on active fraction of fines and particle-size disparity parameters. Geomech Geoeng. https://doi.org/10.1080/17486025.2021.1890233

    Article  Google Scholar 

  10. Cherif Taiba A, Mahmoudi Y, Baille W, Wichtmann T, Belkhatir M (2021) Threshold silt content dependency on particle morphology (shape and size) of granular materials: review with new evidence. Acta Geotech Slov 18(1):28–40. https://doi.org/10.18690/actageotechslov.18.1.28-40.2021

    Article  Google Scholar 

  11. Dai BB, Yang J, Luo X (2015) A numerical analysis of the shear behavior of granular soil with fines. Particuology. https://doi.org/10.1016/j.partic.2014.08.010

    Article  Google Scholar 

  12. Dai BB, Yang J, Gu X, Zhang W (2019) A numerical analysis of the equivalent skeleton void ratio for silty sand. Geomech Eng 17(1):19–30. https://doi.org/10.12989/gae.2019.17.1.019

    Article  Google Scholar 

  13. Dash HK, Sitharam TG, Baudet B (2010) Influence of nonplastic fines on the response of a silty sand to cyclic loading. Soils Found 50(5):695–704

    Article  Google Scholar 

  14. Dash HK, Sitharam TG (2011) Undrained monotonic response of sand-silt mixtures: effect of nonplastic fines. Geomech Geoeng 6:47–58

    Article  Google Scholar 

  15. Doumi K, Mahmoudi Y, Cherif Taiba A, Belkhatir M, Baille W (2021) Experimental investigation on the influence of relative effective diameter on ultimate shear strength of partially saturated granular soils. Acta Geotech Slov 17(1):56–70. https://doi.org/10.18690/actageotechslov.17.1.56-70.2020

    Article  Google Scholar 

  16. Doumi K, Mahmoudi Y, Cherif Taiba A, Belkhatir M, Baille W (2021) Influence of the particle size on the flow potential and friction index of partially saturated sandy soils. Transp Infrastruct Geotech. https://doi.org/10.1007/s40515-021-00193-4

    Article  Google Scholar 

  17. El Shamy U et al (2010) Micromechanical aspects of liquefaction induced lateral spreading. Int J Geomech 10(5):190–201

    Article  Google Scholar 

  18. Georgiannou VN (2006) The undrained response of sands with additions of particles of various shapes and sizes. Géotechnique 56(9):639–649

    Article  Google Scholar 

  19. Ghionna VN, Porcino D (2006) Liquefaction resistance of undisturbed and reconstituted samples of a natural coarse sand from undrained cyclic triaxial tests. J Geotech and Geoenv Engrg 132:194–202

    Article  Google Scholar 

  20. Gobbi S, Reiffsteck P, Lenti L, Santisi d’Avila M-P, Semblat J-F (2021) Liquefaction triggering in silty sands: effects of non-plastic fines and mixture-packing conditions. Acta Geotech. https://doi.org/10.1007/s11440-021-01262-1

    Article  Google Scholar 

  21. Hsiao DH, Phan VTA (2016) Evaluation of static and dynamic properties of sand–fines mixtures through the state and equivalent state parameters. Soil Dyn Earthq Eng 84(2016):134–144

    Article  Google Scholar 

  22. Huang YT, Huang AB, Kuo YC, Tsai MD (2004) A laboratory study on the undrained strength of a silty sand from Central Western Taiwan. Soil Dyn Earthq Eng 24:733–743

    Article  Google Scholar 

  23. Ishihara K (1993) Liquefaction and flow failure during earthquakes. Geotechnique 43(3):351–415

    Article  Google Scholar 

  24. Jakka RS, Datta M, Ramana GV (2010) Liquefaction behaviour of loose and compacted pond ash. Soil Dyn Earthq Eng 30(7):580–590

    Article  Google Scholar 

  25. Kwa KA, Airey DW (2016) Critical state interpretation of effects of fines in silty sands. Géotech Lett 6:100–105

    Article  Google Scholar 

  26. Lade PV, Duncan JM (1973) Cubical triaxial tests on cohesionless soil. J Soil Mech Found Eng Div ASCE 99(10):793–812

    Article  Google Scholar 

  27. Lade PV, Yamamuro JA (1997) Effects of nonplastic fines on static liquefaction of sands. Can Geotech J 34:918–928

    Article  Google Scholar 

  28. Lupini JF, Skinner AE, Vaughan PR (1981) The drained residual strength of cohesive soils. Geotechnique 31(2):181–213

    Article  Google Scholar 

  29. Mahmoudi Y, Cherif Taiba A, Hazout L, Wiebke BB (2018) Influence of soil fabrics and stress state on the undrained instability of overconsolidated binary granular assemblies. J Studia Geotech Mech 40(2):96–116. https://doi.org/10.2478/sgem-2018-0011

    Article  Google Scholar 

  30. Mahmoudi Y, Cherif Taiba A, Hazout L, Belkhatir M (2019) Experimental evidence into the impact of sample reconstitution on the pore water pressure generation of overconsolidated silty sand soils. J Geo-eng. https://doi.org/10.6310/jog.201912_14(4).3

    Article  Google Scholar 

  31. Mahmoudi Y, Cherif Taiba A, Hazout L, Belkhatir M, Baille W (2020) Packing density and overconsolidation ratio effects on the mechanical response of granular soils. Geotech Geol Eng J. https://doi.org/10.1007/s10706-019-01061-2

    Article  Google Scholar 

  32. Mahmoudi Y, Cherif Taiba A, Hazout L, Belkhatir M, Baille W, Wichtmann T (2020) Characterization of mechanical behavior of binary granular assemblies through the equivalent void ratio and equivalent state parameter. Eur J Environ Civ Eng. https://doi.org/10.1080/19648189.2020.1775708

    Article  Google Scholar 

  33. Mitchell JK (1993) Fundamentals of soil behavior. Wiley, New York

    Google Scholar 

  34. Mohammadi A, Qadimi A (2015) A simple critical state approach to predicting the cyclic and monotonic response of sands with different fines contents using the equivalent intergranular void ratio. Acta Geotech 10:587–606

    Article  Google Scholar 

  35. Monkul MM, Ozden G (2007) Compressional behavior of clayey sand and transition fines content. Eng Geol 89(3–4):195–205

    Article  Google Scholar 

  36. Phan VTA, Hsiao DH, Nguyen PTL (2016) Critical state line and state parameter of sand-fines mixtures. Procedia Eng 142:298–305

    Google Scholar 

  37. Phan QT, Bui HH, Nguyen GD, Bouazza A (2021) Effect of particle rolling resistance on drained and undrained behaviour of silty sand. Acta Geotech. https://doi.org/10.1007/s11440-020-01128-y

    Article  Google Scholar 

  38. Payan M, Khoshini M, Jamshidi Chenari R (2019) Elastic dynamic Young’s modulus and Poisson’s ratio of sand-silt mixtures. J Mater Civ Eng 32(1):04019314

    Article  Google Scholar 

  39. Porcino DD, Diano V, Triantafyllidis T, Wichtmann T (2020) Predicting undrained static response of sand with non-plastic fines in terms of equivalent granular state parameter. Acta Geotech 15:867–882. https://doi.org/10.1007/s11440-019-00770-5

    Article  Google Scholar 

  40. Qadimi A, Mohammadi A (2014) Evaluation of state indices in predicting the cyclic and monotonic strength of sands with different fines contents. Soil Dyn Earthq Eng 66(2014):443–458

    Article  Google Scholar 

  41. Rahman MM, Lo SR, Gnanendran CT (2008) On equivalent granular void ratio and steady state behaviour of loose sand with fines. Can Geotech J 45(10):1439–1456

    Article  Google Scholar 

  42. Rahman MM, Lo SR (2014) Undrained behaviour of sand-fines mixtures and their state parameter. J Geotech Geo-environ. https://doi.org/10.1061/(ASCE)GT.19435606.0001115

    Article  Google Scholar 

  43. Sadrekarimi A, Olson SM (2011) Yield strength ratios, critical strength ratios, and brittleness of sandy soils from laboratory tests. Can Geotech J 48(3):493–510. https://doi.org/10.1139/T10-078

    Article  Google Scholar 

  44. Shenthan T(2005) Liquefaction mitigation in silty soils using composite stone column. Ph.D. Dissertation, University at Buffalo, Buffalo

  45. Sitharam T, Dash H (2009) Effect of initial gross void ratio on cyclic response of sand and silt mixtures. Int J Geotech Eng 3:1–10

    Article  Google Scholar 

  46. Sitharam TG, Dash HK, Jakka Ravi S (2013) Postliquefaction undrained shear behavior of sand-silt mixtures at constant void ratio. Int J Geomech 13:421–429

    Article  Google Scholar 

  47. Thevanayagam S (1998) Effect of fines and confining stress on undrained shear strength of silty sands. J Geotech Geoenviron Eng 124(6):479–491

    Article  Google Scholar 

  48. Thevanayagam S, Fiorillo M, Laing L (2000) Effect of nonplastic fines on undrained cyclic strength of silty sands. In: ASCE geotechnical special publication, pp 91–99

  49. Thevanayagam S, Shenthan T, Mohan S, Liang J (2002) Undrained fragility of clean sands, silty sands, and sandy silts. J Geotech Geoenviron Eng 128(10):849–859

    Article  Google Scholar 

  50. Vaid YP, Sivathayalan S, Stedman D (1999) Influence of specimen reconstituting method on the undrained response of sand. Geotech Test J 22(3):187–195

    Article  Google Scholar 

  51. Yamamuro JA, Wood FM, Lade PV (2008) Effect of depositional method on the microstructure of silty sand. Can Geotech J 45(11):1538–1555

    Article  Google Scholar 

  52. Yang SL, Sandven R, Grande L (2006) Instability of sand-silt mixtures. Soil Dyn Earthq Eng 26:183–190

    Article  Google Scholar 

  53. Yang J, Wei LM (2012) Collapse of loose sand with the addition of fines: the role of particle shape”. Geotechnique 62(12):1111–1125

    Article  Google Scholar 

  54. Yang J, Wei LM, Dai BB (2015) State variables for silty sands: global void ratio or skeleton void ratio? Soils Found. https://doi.org/10.1016/j.sandf.2014.12.008

    Article  Google Scholar 

  55. Yoshimine M, Ishihara K (1998) Flow potential of sand during liquefaction. Soils Found 38(3):189–198

    Article  Google Scholar 

  56. Yoshimine M, Robertson PK, Wride CE (1999) Undrained shear strength of clean sands to trigger flow liquefaction. Can Geotech J 36:891–906

    Article  Google Scholar 

  57. Zhu Z, Zhang F, Claude Dupla J, Canou J, Foerster E, Peng Q (2021) Assessment of tamping-based specimen preparation methods on static liquefaction of loose silty sand. Soil Dyn Earthq Eng. https://doi.org/10.1016/j.soildyn.2021.106592

    Article  Google Scholar 

  58. Zlatovic S, Ishihara K (1997) Normalized behavior of very loose non-plastic soils: effects of fabric. Soils Found 37(4):47–56

    Article  Google Scholar 

Download references

Acknowledgments

This research work was carried out in the Laboratory of Soil Mechanics, Foundation Engineering and Environmental Geotechnics in the context of mutual scientific cooperation between Hassiba Benbouali University of Chlef (Algeria) and Ruhr-University of Bochum (Germany). The authors are grateful for the financial support received from the Directorate General for Scientific Research and Technological Development, Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youcef Mahmoudi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, Y., Cherif Taiba, A., Hazout, L. et al. Comprehensive laboratory study on stress–strain of granular soils at constant global void ratio: combined effects of fabrics and silt content. Acta Geotech. 17, 3269–3292 (2022). https://doi.org/10.1007/s11440-022-01480-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-022-01480-1

Keywords

Navigation