Skip to main content
Log in

Experimental verification of genuine multipartite entanglement without shared reference frames

  • Article
  • Physics & Astronomy
  • Published:
Science Bulletin

Abstract

Quantum entanglement is an essential resource for quantum information processing, either for quantum communication or for quantum computation. The multipartite case of entanglement, especially the so called genuine multipartite entanglement, has significant importance for multipartite quantum information protocols. Thus, it is a natural requirement to experimentally verify multipartite quantum entanglement when performing many quantum information tasks. However, this is often technically challenging due to the difficulty of building a shared reference frame among all involved parties, especially when these parties are distant from each other. In this paper, we experimentally verify the genuine tripartite entanglement of a three-photon Greenberger-Horne-Zeilinger state without shared reference frames. A high probability 0.79 of successfully verifying the genuine tripartite entanglement is achieved when no reference frame is shared. In the case of sharing only one common axis, an even higher success probability of 0.91 is achieved.

摘要

量子纠缠在量子信息、量子通信及量子计算中均是一种重要的资源。多体纠缠, 尤其是真多体纠缠对于量子相对于经典信息处理的优势更具基本意义。在实现远距离量子通信或分布式量子计算等协议之前, 对制备的纠缠态进行纠缠性质的实验验证是十分重要且必要的。然而, 传统上使用Bell不等式验证纠缠的方法都要求得到纠缠粒子的各方在对粒子进行测量时选择共同的测量基矢组。这在大空间尺度分发纠缠态, 实现量子协议的实验中, 技术上是很难实现的, 需要耗费大量资源。本实验验证了一种类正四面体基矢组在不共享参考系的情形下, 对于检测真多体纠缠时具有很高的敏感性和成功概率。在3粒子情形下, 3方互相不共享任何参考方向时, 成功概率可达0.79;仅共享一个参考方向时, 成功概率甚至可达0.91。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bennett CH, Brassard G, Crépeau C (1993) Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys Rev Lett 70:1895–1899

    Article  Google Scholar 

  2. Li TC, Yin ZQ (2016) Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Sci Bull 61:163–171; Sci Bull 61:264 (E)

  3. Barenco A, Ekert AK (1995) Dense coding based on quantum entanglement. J Mod Opt 42:1253–1259

    Article  Google Scholar 

  4. Mattle K, Weinfurter H, Kwiat PG et al (1996) Dense coding in experimental quantum communication. Phys Rev Lett 76:4656–4659

    Article  Google Scholar 

  5. Wei D, Yang X, Luo J et al (2004) NMR experimental implementation of three-parties quantum superdense coding. Chin Sci Bull 49:423–426

    Article  Google Scholar 

  6. Brunner N, Cavalcanti D, Pironio S et al (2014) Bell nonlocality. Rev Mod Phys 86:419

    Article  Google Scholar 

  7. Cabello A (2001) Bell’s theorem without inequalities and without probabilities for two observers. Phys Rev Lett 86:1911–1914

    Article  Google Scholar 

  8. Hardy L (1993) Nonlocality for two particles without inequalities for almost all entangled states. Phys Rev Lett 71:1665–1668

    Article  Google Scholar 

  9. Cavalcanti D, Acín A, Brunner N et al (2013) All quantum states useful for teleportation are nonlocal resources. Phys Rev A 87:042104

    Article  Google Scholar 

  10. Yao C, Chen Z, Ma Z et al (2014) Entanglement and discord assisted entropic uncertainty relations under decoherence. Sci China Phys Mech Astron 57:1703–1711

    Article  Google Scholar 

  11. Palsson MS, Wallman JJ, Bennet AJ et al (2012) Experimentally demonstrating reference-frame-independent violations of bell inequalities. Phys Rev A 86:032322

    Article  Google Scholar 

  12. Shadbolt P, Vértesi T, Liang YC et al (2012) Guaranteed violation of a bell inequality without aligned reference frames or calibrated devices. Sci Rep 2:470

    Article  Google Scholar 

  13. D’Ambrosio V, Nagali E, Walborn SP et al (2012) Complete experimental toolbox for alignment-free quantum communication. Nat Commun 3:961

    Article  Google Scholar 

  14. Cao DY, Liu BH, Wang Z et al (2015) Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons. Sci Bull 60:1128–1132

    Article  Google Scholar 

  15. Su X, Jia X, Xie C et al (2014) Preparation of multipartite entangled states used for quantum information networks. Sci China Phys Mech Astron 57:1210–1217

    Article  Google Scholar 

  16. Heilmann R, Gräfe M, Nolte S et al (2015) A novel integrated quantum circuit for high-order w-state generation and its highly precise characterization. Sci Bull 60:96–100

    Article  Google Scholar 

  17. Borsten L, Dahanayake D, Duff MJ et al (2009) Freudenthal triple classification of three-qubit entanglement. Phys Rev A 80:032326

    Article  Google Scholar 

  18. Borsten L, Dahanayake D, Duff MJ et al (2010) Four-qubit entanglement classification from string theory. Phys Rev Lett 105:100507

    Article  Google Scholar 

  19. Coffman V, Kundu J, Wootters WK (2000) Distributed entanglement. Phys Rev A 61:052306

    Article  Google Scholar 

  20. Mermin ND (1990) Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys Rev Lett 65:1838–1840

    Article  Google Scholar 

  21. Guo W, Fan D, Wei L (2015) Experimentally testing Bell’s theorem based on Hardy’s nonlocal ladder proofs. Sci China Phys Mech Astron 58:024201

    Article  Google Scholar 

  22. Tóth G, Gühne O (2005) Detecting genuine multipartite entanglement with two local measurements. Phys Rev Lett 94:060501

    Article  Google Scholar 

  23. Bovino FA, Castagnoli G, Ekert A et al (2005) Direct measurement of nonlinear properties of bipartite quantum states. Phys Rev Lett 95:240407

    Article  Google Scholar 

  24. Walborn SP, Ribeiro PHS, Davidovich L et al (2007) Experimental determination of entanglement by a projective measurement. Phys Rev A 75:032338

    Article  Google Scholar 

  25. Hofmann HF, Takeuchi S (2003) Violation of local uncertainty relations as a signature of entanglement. Phys Rev A 68:032103

    Article  Google Scholar 

  26. Bertlmann RA, Zeilinger A (2002) Quantum (un) speakables: from bell to quantum information. Springer Science & Business Media

  27. Bartlett SD, Rudolph T, Spekkens RW (2007) Reference frames, superselection rules, and quantum information. Rev Mod Phys 79:555–609

    Article  Google Scholar 

  28. Wallman JJ, Liang YC, Bartlett SD (2011) Generating nonclassical correlations without fully aligning measurements. Phys Rev A 83:022110

    Article  Google Scholar 

  29. Senel CF, Lawson T, Kaplan M et al (2015) Demonstrating genuine multipartite entanglement and nonseparability without shared reference frames. Phys Rev A 91:052118

    Article  Google Scholar 

  30. Wallman JJ, Bartlett SD (2012) Observers can always generate nonlocal correlations without aligning measurements by covering all their bases. Phys Rev A 85:024101

    Article  Google Scholar 

  31. Klöckl C, Huber M (2015) Characterizing multipartite entanglement without shared reference frames. Phys Rev A 91:042339

    Article  Google Scholar 

  32. Collins D, Gisin N, Popescu S et al (2002) Bell-type inequalities to detect true n-body nonseparability. Phys Rev Lett 88:170405

    Article  Google Scholar 

  33. Liang YC, Rosset D, Bancal JD et al (2015) Family of bell-like inequalities as device-independent witnesses for entanglement depth. Phys Rev Lett 114:190401

    Article  Google Scholar 

  34. Liang YC, Harrigan N, Bartlett SD et al (2010) Nonclassical correlations from randomly chosen local measurements. Phys Rev Lett 104:050401

    Article  Google Scholar 

  35. Kurtsiefer C, Oberparleiter M, Weinfurter H (2001) Generation of correlated photon pairs in type-II parametric down conversion-revisited. J Mod Optic 48:1997–2007

    Google Scholar 

  36. Zhang C, Huang YF, Wang Z et al (2015) Experimental greenberger-horne-zeilinger-type six-photon quantum nonlocality. Phys Rev Lett 115:260402

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61327901, 61490711, 11274289, 11325419, 61225025, 11474268, and 11374288), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB01030300), the National Youth Top Talent Support Program of National High-level Personnel of Special Support Program, and the Fundamental Research Funds for the Central Universities (WK2470000018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Feng Huang or Chuan-Feng Li.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, C., Huang, YF. et al. Experimental verification of genuine multipartite entanglement without shared reference frames. Sci. Bull. 61, 714–719 (2016). https://doi.org/10.1007/s11434-016-1063-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1063-5

Keywords

Navigation