Skip to main content
Log in

Optical contrast determination of the thickness of SiO2 film on Si substrate partially covered by two-dimensional crystal flakes

利用光学衬度测定部分覆盖二维晶体材料的SiO2/Si衬底的SiO2薄膜厚度

  • Article
  • Physics & Astronomy
  • Published:
Science Bulletin

Abstract

SiO2/Si substrate has been widely used to support two-dimensional (2-D) crystal flakes grown by chemical vapor deposition or prepared by micromechanical cleavage. The visibility of 2-D flakes is very sensitive to the thickness of the SiO2 layer \((h_{{\mathrm{SiO}}_2})\), which can not be determined precisely after the deposit of 2-D flakes. Here, we demonstrated a simple, fast and nondestructive technique to precisely determine \(h_{{\mathrm{SiO}}_2}\) of SiO2 films on Si substrate only by optical contrast measurement with a typical micro-Raman confocal system. Because of its small lateral resolution down to the micrometer scale, this technique can be used to access \(h_{{\mathrm{SiO}}_2}\) on SiO2/Si substrate that has been partially covered by 2-D crystal flakes, and then further determine the layer number of the 2-D crystal flakes. This technique can be extended to other dielectric multilayer substrates and the layer-number determination of 2-D crystal flakes on those substrates.

导读

二维晶体材料的可见度显著地依赖于SiO2/Si衬底的SiO2层厚度, 因此SiO2层厚度的测定对研究二维晶体材料至关重要. 本文提出一种基于光学衬度的显微测量技术. 由于该技术具有微米级别的空间分辨率, 因此, 即使衬底已经被二维晶体材料部分覆盖, 该技术仍然可以用来测定衬底SiO2层的厚度. 作为应用实例, 本文成功地鉴别了SiO2层厚未知的SiO2/Si 衬底上少层石墨烯的层数. 这项技术可以推广到测定其他多层介质结构衬底的厚度和在这些衬底上的二维晶体材料的层数.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  2. Kasprzak LA, Laibowitz RB, Ohring M et al (1977) Dependence of the Si–SiO2 barrier height on SiO2 thickness in MoS2 tunnel structures. J Appl Phys 48:4281–4286

    Article  Google Scholar 

  3. Smith PA, Nordquist CD, Jackson TN et al (2000) Electric-field assisted assembly and alignment of metallic nanowires. Appl Phys Lett 77:1399–1401

    Article  Google Scholar 

  4. Late DJ, Liu B, Matte HSSR et al (1894) Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates. Adv Funct Mater 22:1894–1905

    Article  Google Scholar 

  5. Cole DA, Shallenberger JR, Novak SW et al (2000) SiO2 thickness determination by X-ray photoelectron spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, Rutherford backscattering, transmission electron microscopy, and ellipsometry. J Vac Sci Technol B 18:440–444

    Article  Google Scholar 

  6. Franquet A, Conard T, Gilbert M et al (2013) Thickness and composition measurements of nanoelectronics multilayer thin films by energy dispersive spectroscopy (EDS). J Phys Conf Ser 417:012033

    Article  Google Scholar 

  7. Hlubina P, Ciprian D, Luňáček J et al (2006) Thickness of SiO2 thin film on silicon wafer measured by dispersive white-light spectral interferometry. Appl Phys B 84:511–516

    Article  Google Scholar 

  8. Mang KM, Khang Y, Park YJ et al (1996) Direct imaging of SiO2 thickness variation on Si using modified atomic force microscope. J Vac Sci Technol B 14:1536–1539

    Article  Google Scholar 

  9. Casiraghi C, Hartschuh A, Lidorikis E et al (2007) Rayleigh imaging of graphene and graphene layers. Nano Lett 7:2711–2717

    Article  Google Scholar 

  10. Han WP, Shi YM, Li XL et al (2013) The numerical-aperture-dependent optical contrast and thickness determination of ultrathin flakes of two-dimensional atomic crystals: a case of graphene multilayers. Acta Phys Sin 62:110702

    Google Scholar 

  11. Yoon D, Moon H, Son YW et al (2009) Interference effect on Raman spectrum of graphene on SiO2/Si. Phys Rev B 80:125422

    Article  Google Scholar 

  12. Li SL, Miyazaki H, Song H et al (2012) Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. ACS Nano 6:7381–7388

    Article  Google Scholar 

  13. Koh YK, Bae MH, Cahill DG et al (2011) Reliably counting atomic planes of few-layer graphene (n > 4). ACS Nano 5:269–274

    Article  Google Scholar 

  14. Wang YY, Ni ZH, Shen ZX et al (2008) Interference enhancement of Raman signal of graphene. Appl Phys Lett 92:043121

    Article  Google Scholar 

  15. Palik ED (2002) Handbook of optical constants of solids. Academic Press, Burlington

    Google Scholar 

  16. Johs B, Hale JS (2008) Dielectric function representation by B-splines. Phys Status Solidi A 205:715–719

    Article  Google Scholar 

  17. Kravets VG, Grigorenko AN, Nair RR et al (2010) Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys Rev B 81:155413

    Article  Google Scholar 

  18. Zhao WJ, Tan PH, Zhang J et al (2010) Charge transfer and optical phonon mixing in few-layer graphene chemically doped with sulfuric acid. Phys Rev B 82:245423

    Article  Google Scholar 

  19. Weber JW, Calado VE, van de Sanden MCM (2010) Optical constants of graphene measured by spectroscopic ellipsometry. Appl Phys Lett 97:091904

    Article  Google Scholar 

  20. Matković A, Ralević U, Isić G et al (2012) Spectroscopic ellipsometry and the Fano resonance modeling of graphene optical parameters. Phys Scr T 149:014069

  21. Kozbial A, Li Z, Sun J et al (2014) Understanding the intrinsic water wettability of graphite. Carbon 74:218–225

    Article  Google Scholar 

  22. Xu K, Cao P, Heath JR (2010) Graphene visualizes the first water adlayers on mica at ambient conditions. Science 329:1188–1191

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11225421, 11474277 and 11434010).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping-Heng Tan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Li, XL., Zhang, X. et al. Optical contrast determination of the thickness of SiO2 film on Si substrate partially covered by two-dimensional crystal flakes. Sci. Bull. 60, 806–811 (2015). https://doi.org/10.1007/s11434-015-0774-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0774-3

Keywords

作者中文名字

Navigation