Skip to main content
Log in

Comparing simulated atmospheric carbon dioxide concentration with GOSAT retrievals

  • Article
  • Earth Sciences
  • Published:
Science Bulletin

Abstract

Satellite observations of atmospheric carbon dioxide (CO2) provide a useful way to improve the understanding of global carbon cycling. In this paper, we present a comparison between simulated CO2 concentrations from an inversion model of the CarbonTracker Data Assimilation System (CTDAS) and satellite-based CO2 measurements of column-averaged dry air mole fraction (denoted XCO2) derived from version 3.3 Atmospheric CO2 Observations from Space retrievals of the Greenhouse Gases Observing SATellite (ACOS–GOSAT) L2 data products. We examine the differences of CTDAS and GOSAT to provide important guidance for the further investigation of CTDAS in order to quantify the corresponding flux estimates with satellite-based CO2 observations. We find that the mean point-by-point difference (CTDAS–GOSAT) between CTDAS and GOSAT XCO2 is −0.11 ± 1.81 ppm, with a high agreement (correlation r = 0.77, P < 0.05) over the studied period. The latitudinal zonal variations of CTDAS and GOSAT are in general agreement with clear seasonal fluctuations. The major exception occurs in the zonal band of 0°–15°N where the difference is approximately 4 ppm, indicating that large uncertainty may exist in the assimilated CO2 for the low-latitude region of the Northern Hemisphere (NH). Additionally, we find that the hemispherical/continental differences between CTDAS and GOSAT are typically less than 1 ppm, but obvious discrepancies occur in different hemispheres/continents, with high consistency (point-by-point correlation r = 0.79, P < 0.05) in the NH and a weak correlation (point-by-point correlation r = 0.65, P < 0.05) in the Southern Hemisphere. Overall, the difference of CTDAS and GOSAT is small, and the comparison of CTDAS and GOSAT will further instruct the inverse modeling of CO2 fluxes using GOSAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Machida T, Matsueda H, Sawa Y et al (2008) Worldwide measurements of atmospheric CO2 and other trace gas species using commercial airlines. J Atmos Ocean Technol 25:1744–1754

    Article  Google Scholar 

  2. Deng F, Chen JM (2011) Recent global CO2 flux inferred from atmospheric CO2 observations and its regional analyses. Biogeosciences 8:3263–3281

    Article  Google Scholar 

  3. Saeki T, Maksyutov S, Saito M et al (2013) Inverse modeling of CO2 fluxes using GOSAT data and multi-year ground-based observations. SOLA 9:45–504

    Article  Google Scholar 

  4. Peylin P, Law R, Gurney K et al (2013) Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10:5301–5360

    Article  Google Scholar 

  5. Patra P, Canadell J, Houghton R et al (2013) The carbon budget of South Asia. Biogeosciences 10:513–527

    Article  Google Scholar 

  6. Peters W, Krol M, Van der Werf G et al (2010) Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations. Glob Change Biol 16:1317–1337

    Article  Google Scholar 

  7. Zhang HF, Chen BZ, van der Laan-Luijkx IT et al (2014) Net terrestrial CO2 exchange over China during 2001–2010 estimated with an ensemble data assimilation system for atmospheric CO2. J Geophys Res 119:3500–35158

    Google Scholar 

  8. Cao M-K, Tao B, Li K-R et al (2003) Interannual variation in terrestrial ecosystem carbon fluxes in China from 1981 to 1998. Acta Bot Sin 45:552–560 (in Chinese)

    Google Scholar 

  9. Cao M, Prince SD, Li K et al (2003) Response of terrestrial carbon uptake to climate interannual variability in China. Glob Change Biol 9:536–546

    Article  Google Scholar 

  10. Tian H, Melillo J, Lu C et al (2011) China’s terrestrial carbon balance: Contributions from multiple global change factors. Glob Biogeochem Cycle. doi:10.1029/2010GB003838

    Google Scholar 

  11. Yu GR, Zhu XJ, Fu YL et al (2013) Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Glob Change Biol 19:798–810

    Article  Google Scholar 

  12. Lun F, Li W, Liu Y (2012) Complete forest carbon cycle and budget in China, 1999–2008. For Ecol Manag 264:81–89

    Article  Google Scholar 

  13. Liu S, Zhou T, Wei L et al (2012) The spatial distribution of forest carbon sinks and sources in China. Chin Sci Bull 57:1699–1707

    Article  Google Scholar 

  14. Fan ZM, Li J, Yue TX (2012) Changes of climate-vegetation ecosystem in Loess Plateau of China. Proc Environ Sci 13:715–720

    Article  Google Scholar 

  15. Fang J, Guo Z, Piao S et al (2007) Terrestrial vegetation carbon sinks in China, 1981–2000. Sci China Ser D Earth Sci 50:1341–1350

    Article  Google Scholar 

  16. Inoue M, Morino I, Uchino O et al (2013) Validation of XCO2 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data. Atmos Chem Phys Discuss 13:3203–3246

    Article  Google Scholar 

  17. Basu S, Guerlet S, Butz A et al (2013) Global CO2 fluxes estimated from GOSAT retrievals of total column CO2. Atmos Chem Phys 13:8695–8717

    Article  Google Scholar 

  18. Gurney KR, Law RM, Denning AS et al (2002) Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415:626–630

    Article  Google Scholar 

  19. Parker R, Boesch H, Cogan A et al (2011) Methane observations from the Greenhouse Gases Observing SATellite: Comparison to ground-based TCCON data and model calculations. Geophys Res Lett 38:L15807

    Google Scholar 

  20. Cogan A, Boesch H, Parker R et al (2012) Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): comparison with ground-based TCCON observations and GEOS-Chem model calculations. J Geophys Res. doi:10.1029/2012JD018087

    Google Scholar 

  21. Liu Y, Yang D, Cai Z (2013) A retrieval algorithm for TanSat XCO2 observation: Retrieval experiments using GOSAT data. Chin Sci Bull 58:1520–1523

    Article  Google Scholar 

  22. Zeng Z, Lei L, Guo L et al (2013) Incorporating temporal variability to improve geostatistical analysis of satellite-observed CO2 in China. Chin Sci Bull 58:1948–1954

    Article  Google Scholar 

  23. Kuze A, Suto H, Nakajima M et al (2009) Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl Opt 48:6716–6733

    Article  Google Scholar 

  24. Aumann HH, Chahine MT, Gautier C et al (2003) AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems. Geosci Remote Sens IEEE Trans 41:253–264

    Article  Google Scholar 

  25. Bergamaschi P, Frankenberg C, Meirink JF et al (2009) Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals. J Geophys Res 114:D22301

    Article  Google Scholar 

  26. Crevoisier C, Chédin A, Matsueda H et al (2009) First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations. Atmos Chem Phys 9:4797–4810

    Article  Google Scholar 

  27. Crevoisier C, Heilliette S, Chédin A et al (2004) Midtropospheric CO2 concentration retrieval from AIRS observations in the tropics. Geophys Res Lett. doi:10.1029/2004GL020141

    Google Scholar 

  28. Buchwitz M, Burrows JP (2004) Retrieval of CH4, CO, and CO2 total column amounts from SCIAMACHY near-infrared nadir spectra: Retrieval algorithm and first results. Proc SPIE. doi:10.1117/12.514219

    Google Scholar 

  29. Yokota T, Yoshida Y, Eguchi N et al (2009) Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results. SOLA 5:160–163

    Article  Google Scholar 

  30. O’Dell CW, Connor B, Bösch H et al (2012) The ACOS CO2 retrieval algorithm—Part 1: description and validation against synthetic observations. Atmos Meas Tech 5:99–121

    Article  Google Scholar 

  31. Crisp D, Fisher B, O’Dell C et al (2012) The ACOS CO2 retrieval algorithm—Part II: global XCO2 data characterization. Atmos Meas Tech 5:687–707

    Article  Google Scholar 

  32. Wunch D, Wennberg P, Toon G et al (2011) A method for evaluating bias in global measurements of CO2 total columns from space. Atmos Chem Phys 11:12317–12337

    Article  Google Scholar 

  33. Peters W, Jacobson AR, Sweeney C et al (2007) An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc Natl Acad Sci USA 104:18925–18930

    Article  Google Scholar 

  34. Hammerling DM, Michalak AM, O’Dell C et al (2012) Global CO2 distributions over land from the Greenhouse Gases Observing Satellite (GOSAT). Geophys Res Lett. doi:10.1029/2012GL051203

    Google Scholar 

  35. Tadić J, Loewenstein M, Frankenberg C et al (2012) A comparison of in-situ aircraft measurements of carbon dioxide to GOSAT data measured over Railroad Valley playa, Nevada, USA. Atmos Meas Tech Discuss 5:5641–5664

    Article  Google Scholar 

  36. Parazoo NC, Bowman K, Frankenberg C et al (2013) Interpreting seasonal changes in the carbon balance of southern Amazonia using measurements of XCO2 and chlorophyll fluorescence from GOSAT. Geophys Res Lett 40:2829–2833

    Article  Google Scholar 

  37. Peters W, Miller J, Whitaker J et al (2005) An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations. J Geophys Res. doi:10.1029/2005JD006157

    Google Scholar 

  38. Masarie KA, Pétron G, Andrews A et al (2011) Impact of CO2 measurement bias on CarbonTracker surface flux estimates. J Geophys Res 116:D17305

    Article  Google Scholar 

  39. Zhang HF, Chen BZ, van der Laan-Luijkx IT et al (2014) Net terrestrial CO2 exchange over China during 2001–2010 estimated with an ensemble data assimilation system for atmospheric CO2. J Geophys Res. doi:10.1002/2013JD021297

    Google Scholar 

  40. Zhang H, Chen B, van der Laan-Luijkx I et al (2014) Estimating Asian terrestrial carbon fluxes from CONTRAIL aircraft and surface CO2 observations for the period 2006–2010. Atmos Chem Phys 14:5807–5824

    Article  Google Scholar 

  41. Cheng Y, An X, Yun F et al (2013) Simulation of CO2 variations at Chinese background atmospheric monitoring stations between 2000 and 2009: applying a CarbonTracker model. Chin Sci Bull 58:3986–3993

  42. Krol M, Houweling S, Bregman B et al (2005) The two-way nested global chemistry-transport zoom model TM5: algorithm and applications. Atmos Chem Phys 5:417–432

    Article  Google Scholar 

  43. Rodgers CD, Connor BJ (2003) Intercomparison of remote sounding instruments. J Geophys Res. doi:10.1029/2002JD002299

    Google Scholar 

  44. Van Der Werf GR, Randerson JT, Giglio L et al (2006) Interannual variability of global biomass burning emissions from 1997 to 2004. Atmos Chem Phys 6:3175–3226

    Article  Google Scholar 

  45. Marland G, Boden TA, Andres RJ et al (2003) Global, regional, and national fossil fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. http://cdiac.ornl.gov/trends/emis/overview. Accessed 1 May 2007

  46. Joint Research Centre/Netherlands Environmental Assessment Agency (2009) Emission Database for Global Atmospheric Research 4.0. http://edgar.jrc.ec.europa.eu. Accessed 21 Jan 2010

  47. Jacobson AR, Mikaloff Fletcher SE, Gruber N et al (2007) A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide 1 methods and global-scale fluxes. Glob Biogeochem Cycle. doi:10.1029/2005GB002556

    Google Scholar 

  48. Qu Y, Zhang C, Wang D et al (2013) Comparison of atmospheric CO2 observed by GOSAT and two ground stations in China. Int J Remote Sens 34:3938–3946

    Article  Google Scholar 

  49. Peylin P, Law R, Gurney K et al (2013) Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosci Discuss 10:5301–5360

    Article  Google Scholar 

  50. Stephens BB, Gurney KR, Tans PP et al (2007) Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316:1732–1735

    Article  Google Scholar 

  51. Yang Z, Washenfelder R, Keppel-Aleks G et al (2007) New constraints on Northern Hemisphere growing season net flux. Geophys Res Lett 34:L12807

    Article  Google Scholar 

  52. Chevallier F, O’Dell CW (2013) Error statistics of Bayesian CO2 flux inversion schemes as seen from GOSAT. Geophys Res Lett 40:1252–1256

    Article  Google Scholar 

  53. Patra P, Niwa Y, Schuck T et al (2011) Carbon balance of South Asia constrained by passenger aircraft CO2 measurements. Atmos Chem Phys 11:4163–4175

    Article  Google Scholar 

  54. Belikov DA, Maksyutov S, Sherlock V et al (2013) Simulations of column-averaged CO2 and CH4 using the NIES TM with a hybrid sigma-isentropic (σ-θ) vertical coordinate. Atmos Chem Phys 13:1713–1732

    Article  Google Scholar 

  55. Hammerling DM, Michalak AM, Kawa SR (2012) Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO-2. J Geophys Res. doi:10.1029/2011JD017015

    Google Scholar 

Download references

Acknowledgments

We thank Prof. Wouter Peters and Dr. I. T. van der Laan-Luijkx of Wageningen University for providing CTDAS model and technical support and all those for contributing their work to CTDAS. We kindly thank JAXA, NIES and MOE for the GOSAT data and their continuous support as part of the Joint Research Agreement. We also thank the NASA and the ACOS/OCO–2 project for providing ACOS3.3. These data were produced by the ACOS/OCO–2 project at the Jet Propulsion Laboratory, California Institute of Technology, and obtained from the ACOS/OCO–2 data archive maintained at the NASA Goddard Earth Science Data and Information Services Center. We thank all atmospheric data providers for the NOAA Cooperative Air Sampling network. This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05040403), the National High Technology Research and Development Program of China (2013AA122002).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baozhang Chen.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Chen, B., Xu, G. et al. Comparing simulated atmospheric carbon dioxide concentration with GOSAT retrievals. Sci. Bull. 60, 380–386 (2015). https://doi.org/10.1007/s11434-014-0676-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0676-9

Keywords

Navigation