Skip to main content
Log in

Constraint of satellite CO2 retrieval on the global carbon cycle from a Chinese atmospheric inversion system

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Satellite carbon dioxide (CO2) retrievals provide important constraints on surface carbon fluxes in regions that are undersampled by global in situ networks. In this study, we developed an atmospheric inversion system to infer CO2 sources and sinks from Orbiting Carbon Observatory-2 (OCO-2) column CO2 retrievals during 2015–2019, and compared our estimates to five other state-of-the-art inversions. By assimilating satellite CO2 retrievals in the inversion, the global net terrestrial carbon sink (net biome productivity, NBP) was found to be 1.03±0.39 petagrams of carbon per year (PgC yr−1); this estimate is lower than the sink estimate of 1.46–2.52 PgC yr−1, obtained using surface-based inversions. We estimated a weak northern uptake of 1.30 PgC yr−1 and weak tropical release of −0.26 PgC yr−1, consistent with previous reports. By contrast, the other inversions showed a strong northern uptake (1.44–2.78 PgC yr−1), but diverging tropical carbon fluxes, from a sink of 0.77 PgC yr−1 to a source of −1.26 PgC yr−1. During the 2015–2016 El Niño event, the tropical land biosphere was mainly responsible for a higher global CO2 growth rate. Anomalously high carbon uptake in the northern extratropics, consistent with concurrent extreme Northern Hemisphere greening, partially offset the tropical carbon losses. This anomalously high carbon uptake was not always found in surface-based inversions, resulting in a larger global carbon release in the other inversions. Thus, our satellite constraint refines the current understanding of flux partitioning between northern and tropical terrestrial regions, and suggests that the northern extratropics acted as anomalous high CO2 sinks in response to the 2015–2016 El Niño event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballantyne A P, Alden C B, Miller J B, Tans P P, White J W C. 2012. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature, 488: 70–72

    Article  Google Scholar 

  • Byrne B, Jones D B A, Strong K, Zeng Z C, Deng F, Liu J. 2017. Sensitivity of CO2 surface flux constraints to observational coverage. J Geophys Res-Atmos, 122: 6672–6694

    Article  Google Scholar 

  • CarbonTracker Team. 2022. Obspack_co2_1_nrt_v5.2_2020-06-03

  • CGADIP. 2022. Obspack_co2_1_globalviewplus_v5.0_2019-08-12

  • Charney J, Halem M, Jastrow R. 1969. Use of incomplete historical data to infer the present state of the atmosphere. J Atmos Sci, 26: 1160–1163

    Article  Google Scholar 

  • Chevallier F, Ciais P, Conway T J, Aalto T, Anderson B E, Bousquet P, Brunke E G, Ciattaglia L, Esaki Y, Fröhlich M, Gomez A, Gomez-Pelaez A J, Haszpra L, Krummel P B, Langenfelds R L, Leuenberger M, Machida T, Maignan F, Matsueda H, Morguí J A, Mukai H, Nakazawa T, Peylin P, Ramonet M, Rivier L, Sawa Y, Schmidt M, Steele L P, Vay S A, Vermeulen A T, Wofsy S, Worthy D. 2010. CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements. J Geophys Res, 115: D21307

    Article  Google Scholar 

  • Chevallier F, Fisher M, Peylin P, Serrar S, Bousquet P, Bréon F M, Chédin A, Ciais P. 2005. Inferring CO2 sources and sinks from satellite observations: Method and application to TOVS data. J Geophys Res, 110: D24309

    Article  Google Scholar 

  • Chevallier F, Remaud M, O’Dell C W, Baker D, Peylin P, Cozic A. 2019. Objective evaluation of surface- and satellite-driven carbon dioxide atmospheric inversions. Atmos Chem Phys, 19: 14233–14251

    Article  Google Scholar 

  • Ciais P, Dolman A J, Bombelli A, Duren R, Peregon A, Rayner P J, Miller C, Gobron N, Kinderman G, Marland G, Gruber N, Chevallier F, Andres R J, Balsamo G, Bopp L, Bréon F M, Broquet G, Dargaville R, Battin T J, Borges A, Bovensmann H, Buchwitz M, Butler J, Canadell J G, Cook R B, DeFries R, Engelen R, Gurney K R, Heinze C, Heimann M, Held A, Henry M, Law B, Luyssaert S, Miller J, Moriyama T, Moulin C, Myneni R B, Nussli C, Obersteiner M, Ojima D, Pan Y, Paris J D, Piao S L, Poulter B, Plummer S, Quegan S, Raymond P, Reichstein M, Rivier L, Sabine C, Schimel D, Tarasova O, Valentini R, Wang R, van der Werf G, Wickland D, Williams M, Zehner C. 2014. Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences, 11: 3547–3602

    Article  Google Scholar 

  • Ciais P, Rayner P, Chevallier F, Bousquet P, Logan M, Peylin P, Ramonet M. 2010. Atmospheric inversions for estimating CO2 fluxes: Methods and perspectives. Clim Change, 103: 69–92

    Article  Google Scholar 

  • Crowell S, Baker D, Schuh A, Basu S, Jacobson A R, Chevallier F, Liu J, Deng F, Feng L, McKain K, Chatterjee A, Miller J B, Stephens B B, Eldering A, Crisp D, Schimel D, Nassar R, O’Dell C W, Oda T, Sweeney C, Palmer P I, Jones D B A. 2019. The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network. Atmos Chem Phys, 19: 9797–9831

    Article  Google Scholar 

  • Dannenberg M P, Smith W K, Zhang Y, Song C, Huntzinger D N, Moore D J P. 2021. Large-scale reductions in terrestrial carbon uptake following central pacific El Niño. Geophys Res Lett, 48: e92367

    Article  Google Scholar 

  • Dennis J E, Schnabel R B. 1996. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Philadelphia, PA: Society for Industrial and Applied Mathematics

    Book  Google Scholar 

  • Didan K. 2015. MOD13C2 MODIS/Terra Vegetation Indices Monthly 13 Global 0.05 Deg CMG v006. Greenbelt, MD: Distributed Active Archive Centers

    Google Scholar 

  • Dlugokencky E, Tans P. 2022. Trends in Atmospheric Carbon Dioxide. Boulder: National Oceanic and Atmospheric Administration, Earth System Research Laboratory (NOAA/ESRL)

  • Evensen G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res, 99: 10143–10162

    Article  Google Scholar 

  • Evensen G. 2004. Sampling strategies and square root analysis schemes for the EnKF. Ocean Dyn, 54: 539–560

    Article  Google Scholar 

  • Evensen G. 2009. Data Assimilation: The Ensemble Kalman Filter. Berlin: Springer

    Book  Google Scholar 

  • Fisher J B, Sikka M, Sitch S, Ciais P, Poulter B, Galbraith D, Lee J E, Huntingford C, Viovy N, Zeng N, Ahlström A, Lomas M R, Levy P E, Frankenberg C, Saatchi S, Malhi Y. 2013. African tropical rainforest net carbon dioxide fluxes in the twentieth century. Phil Trans R Soc B, 368: 20120376

    Article  Google Scholar 

  • Friedlingstein P, Jones M W, O’Sullivan M, Andrew R M, Bakker D C E, Hauck J, Le Quéré C, Peters G P, Peters W, Pongratz J, Sitch S, Canadell J G, Ciais P, Jackson R B, Alin S R, Anthoni P, Bates N R, Becker M, Bellouin N, Bopp L, Chau T T T, Chevallier F, Chini L P, Cronin M, Currie K I, Decharme B, Djeutchouang L M, Dou X, Evans W, Feely R A, Feng L, Gasser T, Gilfillan D, Gkritzalis T, Grassi G, Gregor L, Gruber N, Gürses Ö, Harris I, Houghton R A, Hurtt G C, Iida Y, Ilyina T, Luijkx I T, Jain A, Jones S D, Kato E, Kennedy D, Klein Goldewijk K, Knauer J, Korsbakken J I, Körtzinger A, Landschützer P, Lauvset S K, Lefèvre N, Lienert S, Liu J, Marland G, McGuire P C, Melton J R, Munro D R, Nabel J E M S, Nakaoka S I, Niwa Y, Ono T, Pierrot D, Poulter B, Rehder G, Resplandy L, Robertson E, Rödenbeck C, Rosan T M, Schwinger J, Schwingshackl C, Séférian R, Sutton A J, Sweeney C, Tanhua T, Tans P P, Tian H, Tilbrook B, Tubiello F, van der Werf G R, Vuichard N, Wada C, Wanninkhof R, Watson A J, Willis D, Wiltshire A J, Yuan W, Yue C, Yue X, Zaehle S, Zeng J. 2021. Global carbon budget 2021. Earth Syst Sci Data, 14: 1917–2005

    Article  Google Scholar 

  • Friedlingstein P, O’Sullivan M, Jones M W, Andrew R M, Hauck J, Olsen A, Peters G P, Peters W, Pongratz J, Sitch S, Le Quéré C, Canadell J G, Ciais P, Jackson R B, Alin S, Aragão L E O C, Arneth A, Arora V, Bates N R, Becker M, Benoit-Cattin A, Bittig H C, Bopp L, Bultan S, Chandra N, Chevallier F, Chini L P, Evans W, Florentie L, Forster P M, Gasser T, Gehlen M, Gilfillan D, Gkritzalis T, Gregor L, Gruber N, Harris I, Hartung K, Haverd V, Houghton R A, Ilyina T, Jain A K, Joetzjer E, Kadono K, Kato E, Kitidis V, Korsbakken J I, Landschützer P, Lefèvre N, Lenton A, Lienert S, Liu Z, Lombardozzi D, Marland G, Metzl N, Munro D R, Nabel J E M S, Nakaoka S I, Niwa Y, O’Brien K, Ono T, Palmer P I, Pierrot D, Poulter B, Resplandy L, Robertson E, Rödenbeck C, Schwinger J, Séférian R, Skjelvan I, Smith A J P, Sutton A J, Tanhua T, Tans P P, Tian H, Tilbrook B, van der Werf G, Vuichard N, Walker A P, Wanninkhof R, Watson A J, Willis D, Wiltshire A J, Yuan W, Yue X, Zaehle S. 2020. Global carbon budget 2020. Earth Syst Sci Data, 12: 3269–3340

    Article  Google Scholar 

  • Gasser T, Crepin L, Quilcaille Y, Houghton R A, Ciais P, Obersteiner M. 2020. Historical CO2 emissions from land use and land cover change and their uncertainty. Biogeosciences, 17: 4075–4101

    Article  Google Scholar 

  • Gaubert B, Stephens B B, Basu S, Chevallier F, Deng F, Kort E A, Patra P K, Peters W, Rödenbeck C, Saeki T, Schimel D, Van der Laan-Luijkx I, Wofsy S, Yin Y. 2019. Global atmospheric CO2 inverse models converging on neutral tropical land exchange, but disagreeing on fossil fuel and atmospheric growth rate. Biogeosciences, 16: 117–134

    Article  Google Scholar 

  • Harris I, Jones P D, Osborn T J, Lister D H. 2014. Updated high-resolution grids of monthly climatic observations: The CRU TS3.10 Dataset. Int J Climatol, 34: 623–642

    Article  Google Scholar 

  • Houghton R A, Nassikas A A. 2017. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob Biogeochem Cycle, 31: 456–472

    Article  Google Scholar 

  • Hu L, Andrews A E, Thoning K W, Sweeney C, Miller J B, Michalak A M, Dlugokencky E, Tans P P, Shiga Y P, Mountain M, Nehrkorn T, Montzka S A, McKain K, Kofler J, Trudeau M, Michel S E, Biraud S C, Fischer M L, Worthy D E J, Vaughn B H, White J W C, Yadav V, Basu S, van der Velde I R. 2019. Enhanced North American carbon uptake associated with El Niño. Sci Adv, 5: eaaw0076

    Article  Google Scholar 

  • Huang M, Piao S, Ciais P, Peñuelas J, Wang X, Keenan T F, Peng S, Berry J A, Wang K, Mao J, Alkama R, Cescatti A, Cuntz M, De Deurwaerder H, Gao M, He Y, Liu Y, Luo Y, Myneni R B, Niu S, Shi X, Yuan W, Verbeeck H, Wang T, Wu J, Janssens I A. 2019. Air temperature optima of vegetation productivity across global biomes. Nat Ecol Evol, 3: 772–779

    Article  Google Scholar 

  • Hubau W, Lewis S L, Phillips O L, Affum-Baffoe K, Beeckman H, Cuní-Sanchez A, Daniels A K, Ewango C E N, Fauset S, Mukinzi J M, Sheil D, Sonké B, Sullivan M J P, Sunderland T C H, Taedoumg H, Thomas S C, White L J T, Abernethy K A, Adu-Bredu S, Amani C A, Baker T R, Banin L F, Baya F, Begne S K, Bennett A C, Benedet F, Bitariho R, Bocko Y E, Boeckx P, Boundja P, Brienen R J W, Brncic T, Chezeaux E, Chuyong G B, Clark C J, Collins M, Comiskey J A, Coomes D A, Dargie G C, de Haulleville T, Kamdem M N D, Doucet J L, Esquivel-Muelbert A, Feldpausch T R, Fofanah A, Foli E G, Gilpin M, Gloor E, Gonmadje C, Gourlet-Fleury S, Hall J S, Hamilton A C, Harris D J, Hart T B, Hockemba M B N, Hladik A, Ifo S A, Jeffery K J, Jucker T, Yakusu E K, Kearsley E, Kenfack D, Koch A, Leal M E, Levesley A, Lindsell J A, Lisingo J, Lopez-Gonzalez G, Lovett J C, Makana J R, Malhi Y, Marshall A R, Martin J, Martin E H, Mbayu F M, Medjibe V P, Mihindou V, Mitchard E T A, Moore S, Munishi P K T, Bengone N N, Ojo L, Ondo F E, Peh K S H, Pickavance G C, Poulsen A D, Poulsen J R, Qie L, Reitsma J, Rovero F, Swaine M D, Talbot J, Taplin J, Taylor D M, Thomas D W, Toirambe B, Mukendi J T, Tuagben D, Umunay P M, van der Heijden G M F, Verbeeck H, Vleminckx J, Willcock S, Wöll H, Woods J T, Zemagho L. 2020. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 579: 80–87

    Article  Google Scholar 

  • Joiner J, Yoshida Y, Zhang Y, Duveiller G, Jung M, Lyapustin A, Wang Y, Tucker C. 2018. Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data. Remote Sens, 10: 1346

    Article  Google Scholar 

  • Jones M W, Andrew R M, Peters G P, Janssens-Maenhout G, De-Gol A J, Ciais P, Patra P K, Chevallier F, Le Quéré C. 2021. Gridded fossil CO2 emissions and related O2 combustion consistent with national inventories 1959–2018. Sci Data, 8: 2

    Article  Google Scholar 

  • Lauvaux T, Miles N L, Deng A, Richardson S J, Cambaliza M O, Davis K J, Gaudet B, Gurney K R, Huang J, O’Keefe D, Song Y, Karion A, Oda T, Patarasuk R, Razlivanov I, Sarmiento D, Shepson P, Sweeney C, Turnbull J, Wu K. 2016. High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis Flux Experiment (INFLUX). J Geophys Res-Atmos, 121: 5213–5236

    Article  Google Scholar 

  • Lewis J M, Derber J C. 1985. The use of adjoint equations to solve a variational adjustment problem with advective constraints. Tellus A-Dyn Meteorol Oceanogr, 37: 309–322

    Article  Google Scholar 

  • Liu J, Baskaran L, Bowman K, Schimel D, Bloom A A, Parazoo N C, Oda T, Carroll D, Menemenlis D, Joiner J, Commane R, Daube B, Gatti L V, McKain K, Miller J, Stephens B B, Sweeney C, Wofsy S. 2021. Carbon monitoring system flux net biosphere exchange 2020 (CMS-Flux NBE 2020). Earth Syst Sci Data, 13: 299–330

    Article  Google Scholar 

  • Liu J, Bowman K W, Schimel D S, Parazoo N C, Jiang Z, Lee M, Bloom A A, Wunch D, Frankenberg C, Sun Y, O’Dell C W, Gurney K R, Menemenlis D, Gierach M, Crisp D, Eldering A. 2017. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science, 358: eaam5690

    Article  Google Scholar 

  • Lovenduski N S, Bonan G B. 2017. Reducing uncertainty in projections of terrestrial carbon uptake. Environ Res Lett, 12: 044020

    Article  Google Scholar 

  • Mitchard E T A. 2018. The tropical forest carbon cycle and climate change. Nature, 559: 527–534

    Article  Google Scholar 

  • O’Dell C W, Connor B, Bösch H, O’Brien D, Frankenberg C, Castano R, Christi M, Eldering D, Fisher B, Gunson M, McDuffie J, Miller C E, Natraj V, Oyafuso F, Polonsky I, Smyth M, Taylor T, Toon G C, Wennberg P O, Wunch D. 2012. The ACOS CO2 retrieval algorithm. Part 1: Description and validation against synthetic observations. Atmos Meas Tech, 5: 99–121

    Article  Google Scholar 

  • O’Dell C W, Eldering A, Wennberg P O, Crisp D, Gunson M R, Fisher B, Frankenberg C, Kiel M, Lindqvist H, Mandrake L, Merrelli A, Natraj V, Nelson R R, Osterman G B, Payne V H, Taylor T E, Wunch D, Drouin B J, Oyafuso F, Chang A, McDuffie J, Smyth M, Baker D F, Basu S, Chevallier F, Crowell S M R, Feng L, Palmer P I, Dubey M, García O E, Griffith D W T, Hase F, Iraci L T, Kivi R, Morino I, Notholt J, Ohyama H, Petri C, Roehl C M, Sha M K, Strong K, Sussmann R, Te Y, Uchino O, Velazco V A. 2018. Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm. Atmos Meas Tech, 11: 6539–6576

    Article  Google Scholar 

  • Oda T, Maksyutov S. 2011. A very high-resolution (1 km×1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmos Chem Phys, 11: 543–556

    Article  Google Scholar 

  • Oda T, Maksyutov S. 2015. ODIAC Fossil Fuel CO2 Emissions Dataset (version: ODIAC2020). Tsukuba: Center for Global Environmental Research

    Google Scholar 

  • Oda T, Maksyutov S, Andres R J. 2018. The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): A global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions. Earth Syst Sci Data, 10: 87–107

    Article  Google Scholar 

  • Patra P K, Takigawa M, Watanabe S, Chandra N, Ishijima K, Yamashita Y. 2018. Improved chemical tracer simulation by MIROC4.0-based atmospheric chemistry-transport model (MIROC4-ACTM). SOLA, 14: 91–96

    Article  Google Scholar 

  • Peiro H, Crowell S, Schuh A, Baker D F, O’Dell C, Jacobson A R, Chevallier F, Liu J, Eldering A, Crisp D, Deng F, Weir B, Basu S, Johnson M S, Philip S, Baker I. 2022. Four years of global carbon cycle observed from the Orbiting Carbon Observatory 2 (OCO-2) version 9 and in situ data and comparison to OCO-2 version 7. Atmos Chem Phys, 22: 1097–1130

    Article  Google Scholar 

  • Peters W, Jacobson A R, Sweeney C, Andrews A E, Conway T J, Masarie K, Miller J B, Bruhwiler L M P, Pétron G, Hirsch A I, Worthy D E J, van der Werf G R, Randerson J T, Wennberg P O, Krol M C, Tans P P. 2007. An atmospheric perspective on North American carbon dioxide exchange: Carbontracker. Proc Natl Acad Sci USA, 104: 18925–18930

    Article  Google Scholar 

  • Peylin P, Law R M, Gurney K R, Chevallier F, Jacobson A R, Maki T, Niwa Y, Patra P K, Peters W, Rayner P J, Rödenbeck C, van der Laan-Luijkx I T, Zhang X. 2013. Global atmospheric carbon budget: Results from an ensemble of atmospheric CO2 inversions. Biogeosciences, 10: 6699–6720

    Article  Google Scholar 

  • Piao S, He Y, Wang X, Chen F. 2022a. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects. Sci China Earth Sci, 65: 641–651

    Article  Google Scholar 

  • Piao S, Wang X, Wang K, Li X, Bastos A, Canadell J G, Ciais P, Friedlingstein P, Sitch S. 2020. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob Change Biol, 26: 300–318

    Article  Google Scholar 

  • Piao S, Yue C, Ding J, Guo Z. 2022b. Perspectives on the role of terrestrial ecosystems in the ‘carbon neutrality’ strategy. Sci China Earth Sci, 65: 1178–1186

    Article  Google Scholar 

  • Rabier F, Järvinen H, Klinker E, Mahfouf J F, Simmons A. 2000. The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Q J R Meteorol Soc, 126: 1143–1170

    Article  Google Scholar 

  • Rödenbeck C, Houweling S, Gloor M, Heimann M. 2003. CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos Chem Phys, 3: 1919–1964

    Article  Google Scholar 

  • Rödenbeck C, Zaehle S, Keeling R, Heimann M. 2018. How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO2 data. Biogeosciences, 15: 2481–2498

    Article  Google Scholar 

  • Schimel D, Stephens B B, Fisher J B. 2015. Effect of increasing CO2 on the terrestrial carbon cycle. Proc Natl Acad Sci USA, 112: 436–441

    Article  Google Scholar 

  • Stephens B B, Gurney K R, Tans P P, Sweeney C, Peters W, Bruhwiler L, Ciais P, Ramonet M, Bousquet P, Nakazawa T, Aoki S, Machida T, Inoue G, Vinnichenko N, Lloyd J, Jordan A, Heimann M, Shibistova O, Langenfelds R L, Steele L P, Francey R J, Denning A S. 2007. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science, 316: 1732–1735

    Article  Google Scholar 

  • Tian X, Feng X. 2015. A non-linear least squares enhanced POD-4DVar algorithm for data assimilation. Tellus A-Dyn Meteorol Oceanogr, 67: 25340

    Article  Google Scholar 

  • Tian X, Xie Z, Liu Y, Cai Z, Fu Y, Zhang H, Feng L. 2014. A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations. Atmos Chem Phys, 14: 13281–13293

    Article  Google Scholar 

  • Tian X, Xie Z, Sun Q. 2011. A POD-based ensemble four-dimensional variational assimilation method. Tellus A-Dyn Meteorol Oceanogr, 63: 805–816

    Article  Google Scholar 

  • Tian X, Zhang H, Feng X, Xie Y. 2018. Nonlinear least squares En4DVar to 4DEnVar methods for data assimilation: Formulation, analysis, and preliminary evaluation. Mon Weather Rev, 146: 77–93

    Article  Google Scholar 

  • van der Laan-Luijkx I T, van der Velde I R, van der Veen E, Tsuruta A, Stanislawska K, Babenhauserheide A, Zhang H F, Liu Y, He W, Chen H, Masarie K A, Krol M C, Peters W. 2017. The carbontracker data assimilation shell (CTDAS) v1.0: Implementation and global carbon balance 2001–2015. Geosci Model Dev, 10: 2785–2800

    Article  Google Scholar 

  • van der Werf G R, Randerson J T, Giglio L, van Leeuwen T T, Chen Y, Rogers B M, Mu M, van Marle M J E, Morton D C, Collatz G J, Yokelson R J, Kasibhatla P S. 2017. Global fire emissions estimates during 1997–2016. Earth Syst Sci Data, 9: 697–720

    Article  Google Scholar 

  • Wang K, Wang X, Piao S, Chevallier F, Mao J, Shi X, Huntingford C, Bastos A, Ciais P, Xu H, Keeling R F, Pacala S W, Chen A. 2021. Unusual characteristics of the carbon cycle during the 2015–2016 El Niño. Glob Change Biol, 27: 3798–3809

    Article  Google Scholar 

  • Wang W, Ciais P, Nemani R R, Canadell J G, Piao S, Sitch S, White M A, Hashimoto H, Milesi C, Myneni R B. 2013. Variations in atmospheric CO2 growth rates coupled with tropical temperature. Proc Natl Acad Sci USA, 110: 13061–13066

    Article  Google Scholar 

  • Wang Y L, Tian X J, Chevallier F, Johnson M S, Philip S, Baker D F, Schuh A E, Deng F, Zhang X Y, Zhang L, Zhu D, Wang X H. 2022. Constraining China’s land carbon sink from emerging satellite CO2 observations: Progress and challenges. Glob Change Biol, 28: 6838–6846

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge all of the atmospheric inversion data provided by the Carbon Monitoring System, CarbonTracker Europe, Copernicus Atmosphere Monitoring Service, Model for Interdisciplinary Research on Climate, and Jena CarboScope that were used in this study. OCO-2 data were provided by the Atmospheric CO2Observations from Space (ACOS)/OCO-2 project at the Jet Propulsion Laboratory, California Institute of Technology, and can be obtained from the data archive at the National Aeronautics and Space Administration (NASA) Goddard Earth Science Data and Information Services Center. The authors are also grateful for access to the ODIAC2020 dataset, which was provided by the Center for Global Environmental Research, National Institute for Environmental Studies. This work was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (2022QZKK0101) and the National Natural Science Foundation of China (Grant Nos.41975140 & 42105150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangjun Tian.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Z., Wang, T., Zhang, H. et al. Constraint of satellite CO2 retrieval on the global carbon cycle from a Chinese atmospheric inversion system. Sci. China Earth Sci. 66, 609–618 (2023). https://doi.org/10.1007/s11430-022-1036-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1036-7

Keywords

Navigation