Skip to main content
Log in

Breaking the efficiency limitations of dissipative Kerr solitons using nonlinear couplers

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Dissipative Kerr solitons (DKS) have long been suffering from poor power conversion efficiency when driven by continuous-wave lasers. By deriving the critical coupling condition of a multimode nonlinear optics system in a generalized theoretical framework, two efficiency limitations of the conventional pump method of DKS are revealed: the effective coupling rate is too small and is also power-dependent. A general approach is provided to resolve this challenge by introducing two types of nonlinear couplers to couple the soliton cavity and CW input through nonlinear processes. The collective coupler opens multiple coupling channels and the self-adaptive coupler builds a power-independent effective external coupling rate to the DKS for approaching the generalized critical coupling condition, which promises near-unity power conversion efficiencies. For instance, a conversion efficiency exceeding 90% is predicted for aluminum nitride microrings with a nonlinear coupler utilizing second-harmonic generation. The mechanism applies to various nonlinear processes, including Raman and Brillouin scattering, and thus paves the way for micro-solitons toward practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Fortier, and E. Baumann, Commun. Phys. 2, 153 (2019).

    Article  Google Scholar 

  2. T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, Science 361, eaan8083 (2018).

    Article  Google Scholar 

  3. C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, Phys. Rev. A 89, 063814 (2014).

    Article  ADS  Google Scholar 

  4. D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, Nat. Photon. 11, 671 (2017).

    Article  ADS  Google Scholar 

  5. M. Karpov, M. H. P. Pfeiffer, H. Guo, W. Weng, J. Liu, and T. J. Kippenberg, Nat. Phys. 15, 1071 (2019).

    Article  Google Scholar 

  6. Z. Lu, H. J. Chen, W. Wang, L. Yao, Y. Wang, Y. Yu, B. E. Little, S. T. Chu, Q. Gong, W. Zhao, X. Yi, Y. F. Xiao, and W. Zhang, Nat. Commun. 12, 3179 (2021).

    Article  ADS  Google Scholar 

  7. J. Liu, F. Bo, L. Chang, C. H. Dong, X. Ou, B. Regan, X. Shen, Q. Song, B. Yao, W. Zhang, C. L. Zou, and Y. F. Xiao, Sci. China-Phys. Mech. Astron. 65, 104201 (2022).

    Article  ADS  Google Scholar 

  8. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, Nat. Photon. 7, 597 (2013).

    Article  ADS  Google Scholar 

  9. S. W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M. Yu, D. L. Kwong, L. Maleki, and C. W. Wong, Phys. Rev. Lett. 114, 053901 (2015).

    Article  ADS  Google Scholar 

  10. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Photon. 8, 145 (2014).

    Article  ADS  Google Scholar 

  11. Z. Gong, A. Bruch, M. Shen, X. Guo, H. Jung, L. Fan, X. Liu, L. Zhang, J. Wang, J. Li, J. Yan, and H. X. Tang, Opt. Lett. 43, 4366 (2018).

    Article  ADS  Google Scholar 

  12. X. Yi, Q. F. Yang, K. Y. Yang, M. G. Suh, and K. Vahala, Optica 2, 1078 (2015).

    Article  ADS  Google Scholar 

  13. Z. Gong, M. Li, X. Liu, Y. Xu, J. Lu, A. Bruch, J. B. Surya, C. Zou, and H. X. Tang, Phys. Rev. Lett. 125, 183901 (2020).

    Article  ADS  Google Scholar 

  14. Z. Gong, X. Liu, Y. Xu, and H. X. Tang, Optica 7, 1275 (2020).

    Article  ADS  Google Scholar 

  15. Y. He, J. Ling, M. Li, and Q. Lin, Laser Photon. Rev. 14, 1900339 (2020).

    Article  ADS  Google Scholar 

  16. H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Phys. 13, 94 (2017).

    Article  Google Scholar 

  17. X. Xue, Y. Xuan, Y. Liu, P. H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, Nat. Photon. 9, 594 (2015).

    Article  ADS  Google Scholar 

  18. A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, Phys. Rep. 729, 1 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, Nat. Commun. 6, 6299 (2015).

    Article  ADS  Google Scholar 

  20. A. Foltynowicz, P. Maslowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, Faraday Discuss. 150, 23 (2011).

    Article  ADS  Google Scholar 

  21. N. Picqué, and T. W. Hänsch, Nat. Photon. 13, 146 (2019).

    Article  ADS  Google Scholar 

  22. Y. Wang, Z. Wang, X. Wang, W. Shao, L. Huang, B. Liang, B. E. Little, S. T. Chu, W. Zhao, W. Wang, and W. Zhang, Sci. China-Phys. Mech. Astron. 65, 294211 (2022).

    Article  ADS  Google Scholar 

  23. P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, Nature 546, 274 (2017).

    Article  ADS  Google Scholar 

  24. F. Wang, W. Wang, R. Niu, X. Wang, C. Zou, C. Dong, B. E. Little, S. T. Chu, H. Liu, P. Hao, S. Liu, S. Wang, Z. Yin, D. He, W. Zhang, W. Zhao, Z. Han, G. Guo, and W. Chen, Laser Photon. Rev. 14, 1900190 (2020).

    Article  ADS  Google Scholar 

  25. E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, Nat. Photon. 13, 31 (2019).

    Article  ADS  Google Scholar 

  26. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, Nature 507, 341 (2014).

    Article  ADS  Google Scholar 

  27. J. Liu, E. Lucas, A. S. Raja, J. He, J. Riemensberger, R. N. Wang, M. Karpov, H. Guo, R. Bouchand, and T. J. Kippenberg, Nat. Photon. 14, 486 (2020).

    Article  ADS  Google Scholar 

  28. D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M. G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, Nature 557, 81 (2018).

    Article  ADS  Google Scholar 

  29. S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, Optica 1, 10 (2014).

    Article  ADS  Google Scholar 

  30. J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. Pernice, and H. Bhaskaran, Nature 589, 52 (2021).

    Article  ADS  Google Scholar 

  31. C. Bao, L. Zhang, A. Matsko, Y. Yan, Z. Zhao, G. Xie, A. M. Agarwal, L. C. Kimerling, J. Michel, L. Maleki, and A. E. Willner, Opt. Lett. 39, 6126 (2014).

    Article  ADS  Google Scholar 

  32. B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, Nature 562, 401 (2018).

    Article  ADS  Google Scholar 

  33. G. Moille, L. Chang, W. Xie, A. Rao, X. Lu, M. Davaco, J. E. Bowers, and K. Srinivasan, Laser Photon. Rev. 14, 2000022 (2020).

    Article  ADS  Google Scholar 

  34. J. K. Jang, Y. Okawachi, X. Ji, C. Joshi, M. Lipson, and A. L. Gaeta, Universal conversion efficiency scaling with free-spectral-range for soliton kerr combs, in 2020 Conference on Lasers and Electro-Optics (CLEO) (IEEE, New York, 2020), pp. 1–2.

    Google Scholar 

  35. O. B. Helgason, M. Girardi, Z. Ye, F. Lei, J. Schröder, and V. Torres-Company, arXiv: 2202.09410.

  36. J. M. C. Boggio, D. Bodenmuller, S. Ahmed, S. Wabnitz, D. Modotto, and T. Hansson, Nat. Commun. 13, 1292 (2022).

    Article  ADS  Google Scholar 

  37. X. Xue, X. Zheng, and B. Zhou, Nat. Photon. 13, 616 (2019).

    Article  ADS  Google Scholar 

  38. A. W. Bruch, X. Liu, Z. Gong, J. B. Surya, M. Li, C. L. Zou, and H. X. Tang, Nat. Photon. 15, 21 (2021).

    Article  ADS  Google Scholar 

  39. X. Guo, C. L. Zou, H. Jung, Z. Gong, A. Bruch, L. Jiang, and H. X. Tang, Phys. Rev. Appl. 10, 014012 (2018).

    Article  ADS  Google Scholar 

  40. D. F. Walls, and G. J. Milburn, Quantum Optics (Springer Science & Business Media, Berlin, 2007).

    Google Scholar 

  41. J. K. Jang, Y. Okawachi, Y. Zhao, X. Ji, C. Joshi, M. Lipson, and A. L. Gaeta, Opt. Lett. 46, 3657 (2021).

    Article  ADS  Google Scholar 

  42. E. Obrzud, S. Lecomte, and T. Herr, Nat. Photon. 11, 600 (2017).

    Article  Google Scholar 

  43. M. Malinowski, A. Rao, P. Delfyett, and S. Fathpour, APL Photon. 2, 066101 (2017).

    Article  ADS  Google Scholar 

  44. M. Anderson, R. Bouchand, E. Obrzud, J. Liu, S. Karlen, E. Lucas, S. Lecomte, T. Herr, and T. J. Kippenberg, Achieving efficient conversion and broadband operation in pulse-driven kerr microresonators, in Frontiers in Optics (Optical Society of America, New York, 2018), p. FW7B–4.

    Google Scholar 

  45. J. Li, C. Bao, Q. X. Ji, H. Wang, L. Wu, S. Leifer, C. Beichman, and K. Vahala, Optica 9, 231 (2022).

    Article  ADS  Google Scholar 

  46. Y. K. Chembo, Phys. Rev. A 93, 033820 (2016).

    Article  ADS  Google Scholar 

  47. A. W. Bruch, X. Liu, J. B. Surya, C. L. Zou, and H. X. Tang, Optica 6, 1361 (2019).

    Article  ADS  Google Scholar 

  48. J. Lu, A. Al Sayem, Z. Gong, J. B. Surya, C. L. Zou, and H. X. Tang, Optica 8, 539 (2021).

    Article  ADS  Google Scholar 

  49. M. Jankowski, C. Langrock, B. Desiatov, A. Marandi, C. Wang, M. Zhang, C. R. Phillips, M. Loncar, and M. M. Fejer, Optica 7, 40 (2020).

    Article  ADS  Google Scholar 

  50. M. Savanier, C. Ozanam, L. Lanco, X. Lafosse, A. Andronico, I. Favero, S. Ducci, and G. Leo, Appl. Phys. Lett. 103, 261105 (2013).

    Article  ADS  Google Scholar 

  51. J. Lu, M. Li, C. L. Zou, A. Al Sayem, and H. X. Tang, Optica 7, 1654 (2020).

    Article  ADS  Google Scholar 

  52. J. Y. Chen, Z. Li, Z. Ma, C. Tang, H. Fan, Y. M. Sua, and Y. P. Huang, Phys. Rev. Appl. 16, 064004 (2021).

    Article  ADS  Google Scholar 

  53. J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, and Y. Cheng, Nanomaterials 9, 1218 (2019).

    Article  Google Scholar 

  54. J. Szabados, D. N. Puzyrev, Y. Minet, L. Reis, K. Buse, A. Villois, D. V. Skryabin, and I. Breunig, Phys. Rev. Lett. 124, 203902 (2020).

    Article  ADS  Google Scholar 

  55. N. Amiune, D. N. Puzyrev, V. V. Pankratov, D. V. Skryabin, K. Buse, and I. Breunig, Opt. Express 29, 41378 (2021).

    Article  ADS  Google Scholar 

  56. N. Englebert, F. De Lucia, P. Parra-Rivas, C. M. Arabi, P. J. Sazio, S. P. Gorza, and F. Leo, Nat. Photon. 15, 857 (2021).

    Article  ADS  Google Scholar 

  57. X. Lu, G. Moille, A. Rao, D. A. Westly, and K. Srinivasan, Nat. Photon. 15, 131 (2021).

    Article  ADS  Google Scholar 

  58. E. Timurdogan, C. V. Poulton, M. J. Byrd, and M. R. Watts, Nat. Photon. 11, 200 (2017).

    Article  ADS  Google Scholar 

  59. Q. F. Yang, X. Yi, K. Y. Yang, and K. Vahala, Nat. Phys. 13, 53 (2017).

    Article  ADS  Google Scholar 

  60. Y. Bai, M. Zhang, Q. Shi, S. Ding, Y. Qin, Z. Xie, X. Jiang, and M. Xiao, Phys. Rev. Lett. 126, 063901 (2021).

    Article  ADS  Google Scholar 

  61. A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G. L. Schwefel, Nature 568, 378 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-Hua Dong or Chang-Ling Zou.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11934012, 12293053, 12374361, 11904316, 61690192, U21A20433, 12104441, 12293052, and U21A6006), the Anhui Provincial Natural Science Foundation (Grant Nos. 2008085QA34, and 2108085MA22), and the Major Scientific Project of Zhejiang Laboratory (Grant No. 2020LC0AD01). Ming Li and Chang-Ling Zou were also supported by the Fundamental Research Funds for the Central Universities and University of Science and Technology of China (USTC) Research Funds of the Double First-Class Initiative. This work was also supported by the Supercomputing System in the Supercomputing Center of USTC and the USTC Center for Micro and Nanoscale Research and Fabrication. We thank Dr. Alexander Bruch for discussions.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplemental Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Xue, XX., Zhang, YL. et al. Breaking the efficiency limitations of dissipative Kerr solitons using nonlinear couplers. Sci. China Phys. Mech. Astron. 67, 234211 (2024). https://doi.org/10.1007/s11433-023-2288-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2288-y

Navigation