Skip to main content
Log in

Imaging field-tuned quantum Hall broken-symmetry orders and the quantum Hall conducting channel in a charge-neutral graphene/WSe2 heterostructure

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The zeroth Landau level (0LL) in graphene has emerged as a flat band platform in which distinct many-body phases can be explored with unprecedented control by simply tuning the strength and/or direction of the magnetic field. A rich set of quantum Hall ferromagnetic phases with different lattice-scale symmetry-breaking orders are predicted to be realized in high magnetic fields when the 0LL in graphene is half-filled. Here we report on a field-tuned continuous phase transition of different valley orderings in a quantum Hall ferromagnetic phase of charge-neutral graphene on insulating tungsten diselenide (WSe2). The phase transition is clearly revealed by an anomalous field-dependent energy gap in the half-filled 0LL. Using atomic resolution imaging of electronic wavefunctions during the phase transition, we unexpectedly observe the microscopic signatures of field-tuned continuous-varied valley polarization and valley inversion, which are beyond current theoretical predictions. Moreover, the quantum Hall conducting channel of the graphene is directly imaged when the substrate (WSe2) introduces band bending of the 0LL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Balents, C. R. Dean, D. K. Efetov, and A. F. Young, Nat. Phys. 16, 725 (2020).

    Article  Google Scholar 

  2. E. Y. Andrei, and A. H. MacDonald, Nat. Mater. 19, 1265 (2020), arXiv: 2008.08129.

    Article  ADS  Google Scholar 

  3. Y. N. Ren, Y. Zhang, Y. W. Liu, and L. He, Chin. Phys. B 29, 117303 (2020), arXiv: 2008.09769.

    Article  ADS  Google Scholar 

  4. E. Y. Andrei, D. K. Efetov, P. Jarillo-Herrero, A. H. MacDonald, K. F. Mak, T. Senthil, E. Tutuc, A. Yazdani, and A. F. Young, Nat. Rev. Mater. 6, 201 (2021).

    Article  ADS  Google Scholar 

  5. Q. Zheng, C. Y. Hao, X. F. Zhou, Y. X. Zhao, J. Q. He, and L. He, Phys. Rev. Lett. 129, 076803 (2022), arXiv: 2207.12670.

    Article  ADS  Google Scholar 

  6. K. Yang, S. Das Sarma, and A. H. MacDonald, Phys. Rev. B 74, 075423 (2006), arXiv: cond-mat/0605666.

    Article  ADS  Google Scholar 

  7. J. Alicea, and M. P. A. Fisher, Phys. Rev. B 74, 075422 (2006), arXiv: cond-mat/0604601.

    Article  ADS  Google Scholar 

  8. K. Nomura, and A. H. MacDonald, Phys. Rev. Lett. 96, 256602 (2006), arXiv: cond-mat/0604113.

    Article  ADS  Google Scholar 

  9. J. Jung, and A. H. MacDonald, Phys. Rev. B 80, 235417 (2009), arXiv: 0909.1362.

    Article  ADS  Google Scholar 

  10. M. Kharitonov, Phys. Rev. B 85, 155439 (2012), arXiv: 1103.6285.

    Article  ADS  Google Scholar 

  11. T. Jolicoeur, and B. Pandey, Phys. Rev. B 100, 115422 (2019), arXiv: 1907.04612.

    Article  ADS  Google Scholar 

  12. J. Atteia, Y. Lian, and M. O. Goerbig, Phys. Rev. B 103, 035403 (2021), arXiv: 2010.11830.

    Article  ADS  Google Scholar 

  13. J. G. Checkelsky, L. Li, and N. P. Ong, Phys. Rev. Lett. 100, 206801 (2008), arXiv: 0708.1959.

    Article  ADS  Google Scholar 

  14. A. F. Young, C. R. Dean, L. Wang, H. Ren, P. Cadden-Zimansky, K. Watanabe, T. Taniguchi, J. Hone, K. L. Shepard, and P. Kim, Nat. Phys. 8, 550 (2012), arXiv: 1201.4167.

    Article  Google Scholar 

  15. A. F. Young, J. D. Sanchez-Yamagishi, B. Hunt, S. H. Choi, K. Watanabe, T. Taniguchi, R. C. Ashoori, and P. Jarillo-Herrero, Nature 505, 528 (2014), arXiv: 1307.5104.

    Article  ADS  Google Scholar 

  16. A. A. Zibrov, E. M. Spanton, H. Zhou, C. Kometter, T. Taniguchi, K. Watanabe, and A. F. Young, Nat. Phys. 14, 930 (2018), arXiv: 1712.01968.

    Article  Google Scholar 

  17. Y. Zhao, P. Cadden-Zimansky, F. Ghahari, and P. Kim, Phys. Rev. Lett. 108, 106804 (2012), arXiv: 1201.4434.

    Article  ADS  Google Scholar 

  18. A. Knothe, and T. Jolicoeur, Phys. Rev. B 92, 165110 (2015), arXiv: 1507.05866.

    Article  ADS  Google Scholar 

  19. V. P. Gusynin, V. A. Miransky, S. G. Sharapov, and I. A. Shovkovy, Phys. Rev. B 77, 205409 (2008), arXiv: 0806.2136.

    Article  ADS  Google Scholar 

  20. V. P. Gusynin, V. A. Miransky, S. G. Sharapov, I. A. Shovkovy, and C. M. Wyenberg, Phys. Rev. B 79, 115431 (2009), arXiv: 0801.0708.

    Article  ADS  Google Scholar 

  21. P. K. Pyatkovskiy, and V. A. Miransky, Phys. Rev. B 90, 195407 (2014), arXiv: 1409.1629.

    Article  ADS  Google Scholar 

  22. S. Kim, J. Schwenk, D. Walkup, Y. Zeng, F. Ghahari, S. T. Le, M. R. Slot, J. Berwanger, S. R. Blankenship, K. Watanabe, T. Taniguchi, F. J. Giessibl, N. B. Zhitenev, C. R. Dean, and J. A. Stroscio, Nat. Commun. 12, 2852 (2021), arXiv: 2006.10730.

    Article  ADS  Google Scholar 

  23. K. Lai, W. Kundhikanjana, M. A. Kelly, Z. X. Shen, J. Shabani, and M. Shayegan, Phys. Rev. Lett. 107, 176809 (2011), arXiv: 1110.0067.

    Article  ADS  Google Scholar 

  24. S. Y. Li, Y. Zhang, L. J. Yin, and L. He, Phys. Rev. B 100, 085437 (2019), arXiv: 1904.06902.

    Article  ADS  Google Scholar 

  25. L. Veyrat, C. Déprez, A. Coissard, X. Li, F. Gay, K. Watanabe, T. Taniguchi, Z. Han, B. A. Piot, H. Sellier, and B. Sacépé, Science 367, 781 (2020), arXiv: 1907.02299.

    Article  ADS  Google Scholar 

  26. A. Coissard, D. Wander, H. Vignaud, A. G. Grushin, C. Repellin, K. Watanabe, T. Taniguchi, F. Gay, C. B. Winkelmann, H. Courtois, H. Sellier, and B. Sacépé, Nature 605, 51 (2022), arXiv: 2110.02811.

    Article  ADS  Google Scholar 

  27. X. Liu, G. Farahi, C. L. Chiu, Z. Papic, K. Watanabe, T. Taniguchi, M. P. Zaletel, and A. Yazdani, Science 375, 321 (2022), arXiv: 2109.11555.

    Article  ADS  Google Scholar 

  28. Y. N. Ren, M. H. Zhang, C. Yan, Y. Zhang, and L. He, Sci. China-Phys. Mech. Astron. 64, 287011 (2021).

    Article  ADS  Google Scholar 

  29. Q. Zheng, Y. C. Zhuang, Q. F. Sun, and L. He, Nat. Commun. 13, 1597 (2022), arXiv: 2110.06673.

    Article  ADS  Google Scholar 

  30. Q. Zheng, Y. C. Zhuang, Y. N. Ren, C. Yan, Q. F. Sun, and L. He, Phys. Rev. Lett. 130, 076202 (2023), arXiv: 2206.07221.

    Article  ADS  Google Scholar 

  31. Y. Jiang, X. Lai, K. Watanabe, T. Taniguchi, K. Haule, J. Mao, and E. Y. Andrei, Nature 573, 91 (2019), arXiv: 1904.10153.

    Article  ADS  Google Scholar 

  32. Y. Choi, J. Kemmer, Y. Peng, A. Thomson, H. Arora, R. Polski, Y. Zhang, H. Ren, J. Alicea, G. Refael, F. von Oppen, K. Watanabe, T. Taniguchi, and S. Nadj-Perge, Nat. Phys. 15, 1174 (2019), arXiv: 1901.02997.

    Article  Google Scholar 

  33. A. Kerelsky, L. J. McGilly, D. M. Kennes, L. Xian, M. Yankowitz, S. Chen, K. Watanabe, T. Taniguchi, J. Hone, C. Dean, A. Rubio, and A. N. Pasupathy, Nature 572, 95 (2019).

    Article  ADS  Google Scholar 

  34. Y. Xie, B. Lian, B. Jäck, X. Liu, C. L. Chiu, K. Watanabe, T. Tani- guchi, B. A. Bernevig, and A. Yazdani, Nature 572, 101 (2019), arXiv: 1906.09274.

    Article  ADS  Google Scholar 

  35. S. Y. Li, Y. Zhang, Y. N. Ren, J. Liu, X. Dai, and L. He, Phys. Rev. B 102, 121406 (2020), arXiv: 1912.13133.

    Article  ADS  Google Scholar 

  36. Z. Q. Fu, K. K. Bai, Y. N. Ren, J. J. Zhou, and L. He, Phys. Rev. B 101, 235310 (2020), arXiv: 2001.02493.

    Article  ADS  Google Scholar 

  37. A. Laturia, M. L. Van de Put, and W. G. Vandenberghe, npj 2D Mater. Appl. 2, 6 (2018).

    Article  Google Scholar 

  38. H. S. Arora, R. Polski, Y. Zhang, A. Thomson, Y. Choi, H. Kim, Z. Lin, I. Z. Wilson, X. Xu, J. H. Chu, K. Watanabe, T. Taniguchi, J. Alicea, and S. Nadj-Perge, Nature 583, 379 (2020).

    Article  ADS  Google Scholar 

  39. Y. N. Ren, Q. Cheng, S. Y. Li, C. Yan, Y. W. Liu, K. Lv, M. H. Zhang, Q. F. Sun, and L. He, Phys. Rev. B 104, L161408 (2021), arXiv: 2103.16127.

  40. Y. N. Ren, Q. Cheng, Q. F. Sun, and L. He, Phys. Rev. Lett. 128, 206805 (2022).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin He.

Additional information

This work was supported by the National Key R&D Program of China (Grant Nos. 2021YFA1401900, and 2021YFA1400100), and the National Natural Science Foundation of China (Grant Nos. 12141401, and 11974050).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Material

11433_2022_2094_MOESM1_ESM.pdf

Imaging field-tuned quantum Hall broken-symmetry orders and the quantum Hall conducting channel in a charge-neutral graphene/WSe2 heterostructure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Zhang, MH., Ren, YN. et al. Imaging field-tuned quantum Hall broken-symmetry orders and the quantum Hall conducting channel in a charge-neutral graphene/WSe2 heterostructure. Sci. China Phys. Mech. Astron. 66, 276812 (2023). https://doi.org/10.1007/s11433-022-2094-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-2094-3

Keywords

Navigation