Skip to main content
Log in

Local measurements of tunneling magneto-conductance oscillations in monolayer, Bernal-stacked bilayer, and ABC-stacked trilayer graphene

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Shubnikov-de Haas oscillations are the most well-known magneto-oscillations in transport measurements. They are caused by Landau quantization of two-dimensional (2D) electron systems in the presence of a magnetic field. Here we demonstrate that a scanning tunneling microscope (STM) can locally measure similar magneto-oscillations in 2D systems. In Landau level spectroscopy measurements with fine magnetic-field increments, we observed fixed-energy magnetic-field-dependent oscillations of the local density of states. From the measured tunneling magneto-conductance oscillations acquired by STM, energy-momentum dispersions and Berry phases of a monolayer, Bernal-stacked bilayer, and ABC-stacked trilayer graphene were obtained. The reported method is applicable to a wide range of materials because it can obtain the magneto-oscillations of 2D systems larger than the magnetic length; importantly, it also requires no gate electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. W. Ashcroft, and N. D. Mermin, Solid State Physics (Holt Rinehart and Winston, New York, 1976).

    MATH  Google Scholar 

  2. M. Springford, Electrons at the Fermi Surface (Cambridge University Press, Cambridge, 1980).

    MATH  Google Scholar 

  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005), arXiv: cond-mat/0509330.

    Article  ADS  Google Scholar 

  4. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005), arXiv: cond-mat/0509355.

    Article  ADS  Google Scholar 

  5. K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’Ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, Nat. Phys. 2, 177 (2006), arXiv: cond-mat/0602565.

    Article  Google Scholar 

  6. L. Zhang, Y. Zhang, J. Camacho, M. Khodas, and I. Zaliznyak, Nat. Phys. 7, 953 (2011), arXiv: 1103.6023.

    Article  Google Scholar 

  7. X. Wu, X. Li, Z. Song, C. Berger, and W. A. de Heer, Phys. Rev. Lett. 98, 136801 (2007), arXiv: cond-mat/0611339.

    Article  ADS  Google Scholar 

  8. M. A. Zudov, R. R. Du, J. A. Simmons, and J. L. Reno, Phys. Rev. B 64, 201311 (2010).

    Article  ADS  Google Scholar 

  9. A. F. Bangura, J. D. Fletcher, A. Carrington, J. Levallois, M. Nardone, B. Vignolle, P. J. Heard, N. Doiron-Leyraud, D. Leboeuf, L. Taillefer, S. Adachi, C. Proust, and N. E. Hussey, Phys. Rev. Lett. 100, 047004 (2008), arXiv: 0707.4461.

    Article  ADS  Google Scholar 

  10. J. Jobst, D. Waldmann, F. Speck, R. Hirner, D. K. Maude, T. Seyller, and H. B. Weber, Phys. Rev. B 81, 195434 (2010), arXiv: 0908.1900.

    Article  ADS  Google Scholar 

  11. J. G. Analytis, J. H. Chu, Y. Chen, F. Corredor, R. D. McDonald, Z. X. Shen, and I. R. Fisher, Phys. Rev. B 81, 205407 (2010), arXiv: 1001.4050.

    Article  ADS  Google Scholar 

  12. J. Xiong, Y. Luo, Y. H. Khoo, S. Jia, R. J. Cava, and N. P. Ong, Phys. Rev. B 86, 045314 (2012), arXiv: 1111.6031.

    Article  ADS  Google Scholar 

  13. T. Terashima, N. Kikugawa, A. Kiswandhi, E. S. Choi, J. S. Brooks, S. Kasahara, T. Watashige, H. Ikeda, T. Shibauchi, Y. Matsuda, T. Wolf, A. E. Böhmer, F. Hardy, C. Meingast, H. Löhneysen, M. T. Suzuki, R. Arita, and S. Uji, Phys. Rev. B 90, 144517 (2014), arXiv: 1405.7749.

    Article  ADS  Google Scholar 

  14. R. Krishna Kumar, X. Chen, G. H. Auton, A. Mishchenko, D. A. Bandurin, S. V. Morozov, Y. Cao, E. Khestanova, M. Ben Shalom, A. V. Kretinin, K. S. Novoselov, L. Eaves, I. V. Grigorieva, L. A. Ponomarenko, V. I. Fal’ko, and A. K. Geim, Science 357, 181 (2017), arXiv: 1705.11170.

    Article  ADS  Google Scholar 

  15. D. L. Miller, K. D. Kubista, G. M. Rutter, M. Ruan, W. A. de Heer, P. N. First, and J. A. Stroscio, Science 324, 924 (2009).

    Article  ADS  Google Scholar 

  16. G. Li, A. Luican, and E. Y. Andrei, Phys. Rev. Lett. 102, 176804 (2009), arXiv: 0803.4016.

    Article  ADS  Google Scholar 

  17. K. Hashimoto, C. Sohrmann, J. Wiebe, T. Inaoka, F. Meier, Y. Hirayama, R. A. Römer, R. Wiesendanger, and M. Morgenstern, Phys. Rev. Lett. 101, 256802 (2008), arXiv: 0807.3784.

    Article  ADS  Google Scholar 

  18. P. Cheng, C. Song, T. Zhang, Y. Zhang, Y. Wang, J. F. Jia, J. Wang, Y. Wang, B. F. Zhu, X. Chen, X. Ma, K. He, L. Wang, X. Dai, Z. Fang, X. Xie, X. L. Qi, C. X. Liu, S. C. Zhang, and Q. K. Xue, Phys. Rev. Lett. 105, 076801 (2010), arXiv: 1001.3220.

    Article  ADS  Google Scholar 

  19. T. Hanaguri, K. Igarashi, M. Kawamura, H. Takagi, and T. Sasagawa, Phys. Rev. B 82, 081305 (2010), arXiv: 1003.0100.

    Article  ADS  Google Scholar 

  20. Y. J. Song, A. F. Otte, Y. Kuk, Y. Hu, D. B. Torrance, P. N. First, W. A. de Heer, H. Min, S. Adam, M. D. Stiles, A. H. MacDonald, and J. A. Stroscio, Nature 467, 185 (2010).

    Article  ADS  Google Scholar 

  21. L. J. Yin, S. Y. Li, J. B. Qiao, J. C. Nie, and L. He, Phys. Rev. B 91, 115405 (2015), arXiv: 1501.01538.

    Article  ADS  Google Scholar 

  22. S. Y. Li, Y. Zhang, L. J. Yin, and L. He, Phys. Rev. B 100, 085437 (2019), arXiv: 1904.06902.

    Article  ADS  Google Scholar 

  23. G. M. Rutter, S. Jung, N. N. Klimov, D. B. Newell, N. B. Zhitenev, and J. A. Stroscio, Nat. Phys. 7, 649 (2011), arXiv: 1103.2164.

    Article  Google Scholar 

  24. L. J. Yin, H. Jiang, J. B. Qiao, and L. He, Nat. Commun. 7, 11760 (2016).

    Article  ADS  Google Scholar 

  25. Y. Zhang, S. Y. Li, H. Huang, W. T. Li, J. B. Qiao, W. X. Wang, L. J. Yin, K. K. Bai, W. Duan, and L. He, Phys. Rev. Lett. 117, 166801 (2016), arXiv: 1604.06542.

    Article  ADS  Google Scholar 

  26. L. J. Yin, K. K. Bai, W. X. Wang, S. Y. Li, Y. Zhang, and L. He, Front. Phys. 12, 127208 (2017), arXiv: 1703.04241.

    Article  ADS  Google Scholar 

  27. L. J. Yin, Y. Zhang, J. B. Qiao, S. Y. Li, and L. He, Phys. Rev. B 93, 125422 (2016), arXiv: 1510.06109.

    Article  ADS  Google Scholar 

  28. L. J. Yin, L. J. Shi, S. Y. Li, Y. Zhang, Z. H. Guo, and L. He, Phys. Rev. Lett. 122, 146802 (2019), arXiv: 1811.10142.

    Article  ADS  Google Scholar 

  29. Y. W. Liu, Z. Hou, S. Y. Li, Q. F. Sun, and L. He, Phys. Rev. Lett. 124, 166801 (2020), arXiv: 1910.05873.

    Article  ADS  Google Scholar 

  30. S. Y. Li, Y. Su, Y. N. Ren, and L. He, Phys. Rev. Lett. 124, 106802 (2020).

    Article  ADS  Google Scholar 

  31. F. Ghahari, D. Walkup, C. Gutierrez, J. F. Rodriguez-Nieva, Y. Zhao, J. Wyrick, F. D. Natterer, W. G. Cullen, K. Watanabe, T. Taniguchi, L. S. Levitov, N. B. Zhitenev, and J. A. Stroscio, Science 356, 845 (2017), arXiv: 1705.11117.

    Article  ADS  Google Scholar 

  32. C. Dutreix, H. González-Herrero, I. Brihuega, M. I. Katsnelson, C. Chapelier, and V. T. Renard, Nature 574, 219 (2019), arXiv: 1910.00437.

    Article  ADS  Google Scholar 

  33. Y. Zhang, Y. Su, and L. He, Phys. Rev. Lett. 125, 116804 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin He.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974050, and 11674029). Lin He also acknowledges support from the National Program for Support of Top-notch Young Professionals, the “Fundamental Research Funds for the Central Universities”, and the “Chang Jiang Scholars Program”.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Materials for

11433_2021_1711_MOESM1_ESM.doc

Local measurements of tunneling magneto-conductance oscillations in monolayer, Bernal-stacked bilayer and ABC-stacked trilayer graphene

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, YN., Zhang, MH., Yan, C. et al. Local measurements of tunneling magneto-conductance oscillations in monolayer, Bernal-stacked bilayer, and ABC-stacked trilayer graphene. Sci. China Phys. Mech. Astron. 64, 287011 (2021). https://doi.org/10.1007/s11433-021-1711-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1711-6

Keywords

Navigation