Skip to main content
Log in

Collective radiance of giant atoms in non-Markovian regime

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We investigate the non-Markovian dynamics of two giant artificial atoms interacting with a continuum of bosonic modes in a one-dimensional (1D) waveguide. Based on the diagrammatic method, we present the exact analytical solutions, which predict the rich phenomena of collective radiance. For the certain collective states, the decay rates are found to be far beyond that predicted in the the Dicke model and standard Markovian framework, which indicates the occurrence of super-superradiance. The superadiance-to-subradiance transition could be realized by adjusting the exchange symmetry of giant atoms. Moreover, there exist multiple bound states in continuum (BICs), with photons/phonons bouncing back and forth in the cavity-like geometries formed by the coupling points. The trapped photons/phonons in the BICs can also be re-released conveniently by changing the energy level splitting of giant atoms. The mechanism relies on the joint effects of the coherent time-delayed feedback and the interference between the coupling points of giant atoms. This work fundamentally broadens the fields of giant atom collective radiance by introducing non-Markovianity. It also paves the way for a clean analytical description of the nonlinear open quantum system with more complex retardation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gross, and S. Haroche, Phys. Rep. 93, 301 (1982).

    Article  ADS  Google Scholar 

  2. Z. Wang, T. Jaako, P. Kirton, and P. Rabl, Phys. Rev. Lett. 124, 213601 (2020), arXiv: 1912.04315.

    Article  ADS  Google Scholar 

  3. K. Sinha, A. González-Tudela, Y. Lu, and P. Solano, Phys. Rev. A 102, 043718 (2020), arXiv: 2006.12569.

    Article  ADS  MathSciNet  Google Scholar 

  4. R. H. Dicke, Phys. Rev. 93, 99 (1954).

    Article  ADS  Google Scholar 

  5. S. Longhi, Opt. Lett. 45, 3297 (2020), arXiv: 2008.06540.

    Article  ADS  Google Scholar 

  6. N. Vats, and S. John, Phys. Rev. A 58, 4168 (1998), arXiv: quant-ph/9806038.

    Article  ADS  Google Scholar 

  7. A. González-Tudela, and J. I. Cirac, Phys. Rev. A 96, 043811 (2017), arXiv: 1705.06677.

    Article  ADS  Google Scholar 

  8. A. González-Tudela, and J. I. Cirac, Phys. Rev. Lett. 119, 143602 (2017), arXiv: 1705.06673.

    Article  ADS  Google Scholar 

  9. L. Xu, and X. Q. Li, Sci. China-Phys. Mech. Astron. 62, 980312 (2019).

    Article  ADS  Google Scholar 

  10. D. De Bernardis, T. Jaako, and P. Rabl, Phys. Rev. A 97, 043820 (2018), arXiv: 1712.00015.

    Article  ADS  MathSciNet  Google Scholar 

  11. N. E. Rehler, and J. H. Eberly, Phys. Rev. A 3, 1735 (1971).

    Article  ADS  Google Scholar 

  12. T. Tufarelli, F. Ciccarello, and M. S. Kim, Phys. Rev. A 87, 013820 (2013), arXiv: 1208.0969.

    Article  ADS  Google Scholar 

  13. Y. T. Zhu, R. Wu, Z. Peng, and S. Xue, Front. Phys. 10, 896596 (2022).

    Article  Google Scholar 

  14. K. Sinha, P. Meystre, E. A. Goldschmidt, F. K. Fatemi, S. L. Rolston, and P. Solano, Phys. Rev. Lett. 124, 043603 (2020), arXiv: 1907.12017.

    Article  ADS  Google Scholar 

  15. F. Dinc, and A. M. Brańczyk, Phys. Rev. Res. 1, 032042 (2019).

    Article  Google Scholar 

  16. S. Arranz Regidor, G. Crowder, H. Carmichael, and S. Hughes, Phys. Rev. Res. 3, 023030 (2021), arXiv: 2011.12205.

    Article  Google Scholar 

  17. C. Guo, K. Modi, and D. Poletti, Phys. Rev. A 102, 062414 (2020), arXiv: 2004.11038.

    Article  ADS  MathSciNet  Google Scholar 

  18. T. Lacroix, A. Dunnett, D. Gribben, B. W. Lovett, and A. Chin, Phys. Rev. A 104, 052204 (2021), arXiv: 2107.11217.

    Article  ADS  Google Scholar 

  19. S. Arranz Regidor, and S. Hughes, Phys. Rev. A 104, L031701 (2021), arXiv: 2105.08097.

    Article  ADS  Google Scholar 

  20. F. Dinc, Phys. Rev. A 102, 013727 (2020), arXiv: 2006.01843.

    Article  ADS  MathSciNet  Google Scholar 

  21. X. Gu, A. F. Kockum, A. Miranowicz, Y. Liu, and F. Nori, Phys. Rep. 718-719, 1 (2017), arXiv: 1707.02046.

    Article  ADS  Google Scholar 

  22. J. Q. You, and F. Nori, Nature 474, 589 (2011), arXiv: 1202.1923.

    Article  ADS  Google Scholar 

  23. P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, Appl. Phys. Rev. 6, 021318 (2019), arXiv: 1904.06560.

    Article  ADS  Google Scholar 

  24. P. Z. Zhao, Z. J. Z. Dong, Z. X. Zhang, G. P. Guo, D. M. Tong, and Y. Yin, Sci. China-Phys. Mech. Astron. 64, 250362 (2021).

    Article  ADS  Google Scholar 

  25. M. V. Gustafsson, T. Aref, A. F. Kockum, M. K. Ekström, G. Johansson, and P. Delsing, Science 346, 207 (2014), arXiv: 1404.0401.

    Article  ADS  Google Scholar 

  26. G. Andersson, B. Suri, L. Guo, T. Aref, and P. Delsing, Nat. Phys. 15, 1123 (2019), arXiv: 1812.01302.

    Article  Google Scholar 

  27. L. Guo, A. Grimsmo, A. F. Kockum, M. Pletyukhov, and G. Johansson, Phys. Rev. A 95, 053821 (2017), arXiv: 1612.00865.

    Article  ADS  Google Scholar 

  28. B. Kannan, M. J. Ruckriegel, D. L. Campbell, A. Frisk Kockum, J. Braumüller, D. K. Kim, M. Kjaergaard, P. Krantz, A. Melville, B. M. Niedzielski, A. Vepsäläinen, R. Winik, J. L. Yoder, F. Nori, T. P. Orlando, S. Gustavsson, and W. D. Oliver, Nature 583, 775 (2020).

    Article  ADS  Google Scholar 

  29. A. Frisk Kockum, P. Delsing, and G. Johansson, Phys. Rev. A 90, 013837 (2014), arXiv: 1406.0350.

    Article  ADS  Google Scholar 

  30. W. Zhao, and Z. Wang, Phys. Rev. A 101, 053855 (2020), arXiv: 2001.00414.

    Article  ADS  Google Scholar 

  31. X. L. Yin, Y. H. Liu, J. F. Huang, and J. Q. Liao, Phys. Rev. A 106, 013715 (2022), arXiv: 2203.07812.

    Article  ADS  Google Scholar 

  32. X. Wang, T. Liu, A. F. Kockum, H. R. Li, and F. Nori, Phys. Rev. Lett. 126, 043602 (2021), arXiv: 2008.13560.

    Article  ADS  Google Scholar 

  33. L. Guo, A. F. Kockum, F. Marquardt, and G. Johansson, Phys. Rev. Res. 2, 043014 (2020), arXiv: 1911.13028.

    Article  Google Scholar 

  34. Y. Zhu, R. Wu, and S. Xue, arXiv: 2106.05020.

  35. A. F. Kockum, G. Johansson, and F. Nori, Phys. Rev. Lett. 120, 140404 (2018).

    Article  ADS  Google Scholar 

  36. F. M. Asl, and A. G. Ulsoy, J. Dyn. Syst. Meas. Control 125, 215 (2003).

    Article  Google Scholar 

  37. Q. Li, L. Zhou, and C. P. Sun, Phys. Rev. A 89, 063810 (2014), arXiv: 1308.2011.

    Article  ADS  Google Scholar 

  38. L. Zhou, L. P. Yang, Y. Li, and C. P. Sun, Phys. Rev. Lett. 111, 103604 (2013), arXiv: 1303.3687.

    Article  ADS  Google Scholar 

  39. X. L. Dong, P. B. Li, T. Liu, and F. Nori, Phys. Rev. Lett. 126, 203601 (2021), arXiv: 2104.09101.

    Article  ADS  Google Scholar 

  40. L. Du, Y. Zhang, and Y. Li, arXiv: 2206.14974.

  41. L. Du, Y. T. Chen, Y. Zhang, and Y. Li, Phys. Rev. Res. 4, 023198 (2022), arXiv: 2201.12575.

    Article  Google Scholar 

  42. F. Dinc, İ. Ercan, and A. M. Brańczyk, Quantum 3, 213 (2019).

    Article  Google Scholar 

  43. L. Du, M. R. Cai, J. H. Wu, Z. Wang, and Y. Li, Phys. Rev. A 103, 053701 (2021), arXiv: 2102.03488.

    Article  ADS  Google Scholar 

  44. H. Zheng, and H. U. Baranger, Phys. Rev. Lett. 110, 113601 (2013), arXiv: 1206.4442.

    Article  ADS  Google Scholar 

  45. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, Nat. Rev. Mater. 1, 16048 (2016).

    Article  ADS  Google Scholar 

  46. F. H. Stillinger, and D. R. Herrick, Phys. Rev. A 11, 446 (1975).

    Article  ADS  Google Scholar 

  47. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, Phys. Rev. Lett. 100, 183902 (2008).

    Article  ADS  Google Scholar 

  48. M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, Phys. Rev. Lett. 108, 070401 (2012), arXiv: 1110.6472.

    Article  ADS  Google Scholar 

  49. G. Calajó, Y. L. L. Fang, H. U. Baranger, and F. Ciccarello, Phys. Rev. Lett. 122, 073601 (2019), arXiv: 1811.02582.

    Article  ADS  Google Scholar 

  50. J. T. Shen, and S. Fan, Phys. Rev. Lett. 98, 153003 (2007), arXiv: quant-ph/0701170.

    Article  ADS  Google Scholar 

  51. R. Trivedi, D. Malz, S. Sun, S. Fan, and J. Vučković, Phys. Rev. A 104, 013705 (2021), arXiv: 2009.08602.

    Article  ADS  Google Scholar 

  52. P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, Nature 541, 473 (2017), arXiv: 1608.00446.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-You Lü.

Additional information

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFA1400700), and the National Natural Science Foundation of China (Grant Nos. 11974125, and 12147143).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, QY., Wu, Y. & Lü, XY. Collective radiance of giant atoms in non-Markovian regime. Sci. China Phys. Mech. Astron. 66, 224212 (2023). https://doi.org/10.1007/s11433-022-1990-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-1990-x

Navigation