Skip to main content
Log in

Higgs assisted razor search for Higgsinos at a 100 TeV pp collider

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A 100 TeV proton-proton collider will be an extremely effective way to probe the electroweak sector of the minimal supersymmetric standard model (MSSM). In this paper, we describe a search strategy for discovering pair-produced Higgsino-like next-to-lightest supersymmetric particles (NLSPs) at a 100 TeV hadron collider that decay to Bino-like lightest supersymmetric particles (LSPs) via intermediate Z and SM Higgs bosons that in turn decay to a pair of leptons and a pair of b-quarks respectively: \(\widetilde\chi _2^0\widetilde\chi _3^0 \to ({\rm{Z}}\widetilde\chi _1^0)(h\widetilde\chi _1^0) \to bb\;\ell \ell + \widetilde\chi _1^0\widetilde\chi _1^0\) In addition, we examine the potential for machine learning techniques to boost the power of our searches. Using this analysis, Higgsinos up to 1.4 TeV can be discovered at the 5σ level for Binos with mass of about 0.9 TeV using 3000 fb−1 of data. Additionally, Higgsinos up to 1.8 TeV can be excluded at 95% C.L. for Binos with mass of about 1.4 TeV. This search channel extends the multi-lepton search limits, especially in the region where the mass difference between the Higgsino NLSPs and the Bino LSP is small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Martin, arXiv: hep-ph/9709356.

  2. G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279 (2005), arXiv: hep-ph/0404175.

    ADS  Google Scholar 

  3. M. Aaboud, et al. (ATLAS Collaboration), Eur. Phys. J. C 78, 625 (2018), arXiv: 1805.11381.

    ADS  Google Scholar 

  4. A. M. Sirunyan, et al. (CMS Collaboration), J. High Energ. Phys. 2018(5), 025 (2018), arXiv: 1802.02110.

    Google Scholar 

  5. J. D. Wells, in Proceedings of the 11th International Conference on Supersymmetry and the Unification of Fundamental Interactions (SUSY 2003): Implications of supersymmetry breaking with a little hierarchy between gauginos and scalars, Tucson, June 5–10, 2003. arXiv: hepph/0306127.

  6. N. Arkani-Hamed, S. Dimopoulos, G. F. Giudice, and A. Romanino, Nucl. Phys. B 709, 3 (2005), arXiv: hep-ph/0409232.

    ADS  Google Scholar 

  7. G. F. Giudice, and A. Romanino, Nucl. Phys. B 699, 65 (2004)

    ADS  Google Scholar 

  8. G. F. Giudice, and A. Romanino, Nucl. Phys. B 706, 487 (2005), arXiv: hep-ph/0406088.

    ADS  Google Scholar 

  9. A. M. Situnyan, et al. (CMS Collaboration), Searches for New Phenomena in Events with Jets and High Values of the MT2Variable, Including Signatures with Disappearing Tracks, in Proton-proton Collisions at \(\sqrt s = 13\;TeV\), Technical Report. CMS-PAS-SUS-19-005, CERN, Geneva, 2019.

    Google Scholar 

  10. M. Aanoud, et al. (ATLAS Collaboration), SUSY July 2019 Summary Plot Update, Technical Report. ATL-PHYS-PUB-2019-022, CERN, Geneva, 2019.

    Google Scholar 

  11. A. M. Sirunyan, et al. (CMS Collaboration), J. High Energ. Phys. 2018(3), 166 (2018), arXiv: 1709.05406.

    Google Scholar 

  12. A. M. Sirunyan, et al. (CMS Collaboration), J. High Energ. Phys. 2018(3), 160 (2018), arXiv: 1801.03957.

    Google Scholar 

  13. M. Aaboud, et al. (ATLAS Collaboration), Phys. Rev. D 98, 092002 (2018), arXiv: 1806.04030.

    ADS  Google Scholar 

  14. M. Aaboud, et al. (ATLAS Collaboration), Phys. Rev. D 98, 032009 (2018), arXiv: 1804.03602.

    ADS  Google Scholar 

  15. G. Aad, et al. (ATLAS Collaboration), Phys. Rev. D 101, 052005 (2020), arXiv: 1911.12606.

    ADS  Google Scholar 

  16. M. Aanoud, et al. (ATLAS Collaboration), arXiv: 1909.09226.

  17. M. Aanoud, et al. (ATLAS Collaboration), Eur. Phys. J. C 80, 123 (2020), arXiv: 1908.08215.

    ADS  Google Scholar 

  18. M. Aaboud, et al. (ATLAS Collaboration), Phys. Rev. D 100, 012006 (2019), arXiv: 1812.09432.

    ADS  Google Scholar 

  19. M. Aaboud, et al. (ATLAS Collaboration), Phys. Rev. D 98, 092012 (2018), arXiv: 1806.02293.

    ADS  Google Scholar 

  20. M. Aaboud, et al. (ATLAS Collaboration), Eur. Phys. J. C 78, 995 (2018), arXiv: 1803.02762.

    ADS  Google Scholar 

  21. M. Aaboud, et al. (ATLAS Collaboration), Phys. Rev. D 97, 052010 (2018), arXiv: 1712.08119.

    ADS  Google Scholar 

  22. M. Aaboud, et al. (ATLAS Collaboration), J. High Energ. Phys. 2018(6), 022 (2018), arXiv: 1712.02118.

  23. M. Aaboud, et al. (ATLAS Collaboration), Eur. Phys. J. C 78, 154 (2018), arXiv: 1708.07875.

    ADS  Google Scholar 

  24. T. Han, S. Padhi, and S. Su, Phys. Rev. D 88, 115010 (2013), arXiv: 1309.5966.

    ADS  Google Scholar 

  25. B. S. Acharya, K. Boźek, C. Pongkitivanichkul, and K. Sakurai, J. High Energ. Phys. 2015(2), 181 (2015), arXiv: 1410.1532.

    Google Scholar 

  26. S. Gori, S. Jung, L. T. Wang, and J. D. Wells, J. High Energ. Phys. 2014(12), 108 (2014), arXiv: 1410.6287.

    Google Scholar 

  27. N. Arkani-Hamed, T. Han, M. Mangano, and L. T. Wang, Phys. Rep. 652, 1 (2016), arXiv: 1511.06495.

    ADS  Google Scholar 

  28. M. Benedikt, and F. Zimmermann, in Proceedings of the FCC Physics Workshop: Future Circular Collider Study, Status and Progress, https://indico.cern.ch/event/550509/contributions/2413230/attachments/1396002/2128079/170116-MBE-FCC-Study-Status_ap.pdf, CERN, January 16, 2017.

  29. M. Ahmad, et al. (CEPC-SPPC Study Group), in CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector, http://cepc.ihep.ac.cn/preCDR/volume.html, CEPC-SppC Progress Report, Institute of High Energy Physics, Chinese Academy of Sciences, 2015.

  30. R. Contino, D. Curtin, A. Katz, M. L. Mangano, G. Panico, M. J. Ramsey-Musolf, G. Zanderighi, C. Anastasiou, W. Astill, G. Bambhaniya, J. K. Behr, W. Bizon, P. S. Bhupal Dev, D. Bortoletto, D. Buttazzo, Q.-H. Cao, F. Caola, J. Chakrabortty, C.-Y. Chen, S.-L. Chen, D. de Florian, F. Dulat, C. Englert, J. A. Frost, B. Fuks, T. Gherghetta, G. Giudice, J. Gluza, N. Greiner, H. Gray, N. P. Hartland, C. Issever, T. Jelinski, A. Karlberg, J. H. Kim, F. Kling, A. Lazopoulos, S. J. Lee, Y. Liu, G. Luisoni, J. Mazzitelli, B. Mistlberger, P. Monni, K. Nikolopoulos, R. N. Mohapatra, A. Papaefstathiou, M. Perelstein, F. Petriello, T. Plehn, P. Reimitz, J. Ren, J. Rojo, K. Sakurai, T. Schell, F. Sala, M. Selvaggi, H.-S. Shao, M. Son, M. Spannowsky, T. Srivastava, S.-F. Su, R. Szafron, T. Tait, A. Tesi, A. Thamm, P. Torrielli, F. Tramontano, J. Winter, A. Wulzer, Q.-S. Yan, W. M. Yao, Y.-C. Zhang, X. Zhao, Z. Zhao, and Y.-M. Zhong, arXiv: 1606.09408.

  31. T. Golling, M. Hance, P. Harris, M. L. Mangano, M. McCullough, F. Moortgat, P. Schwaller, R. Torre, P. Agrawal, D. S. M. Alves, S. Antusch, A. Arbey, B. Auerbach, G. Bambhaniya, M. Battaglia, M. Bauer, P. S. Bhupal Dev, A. Boveia, J. Bramante, O. Buchmueller, M. Buschmann, J. Chakrabortty, M. Chala, S. Chekanov, C.-Y. Chen, H.-C. Cheng, M. Cirelli, M. Citron, T. Cohen, N. Craig, D. Curtin, R. T. D’Agnolo, C. Doglioni, J. A. Dror, T. du Pree, D. Dylewsky, J. Ellis, S. A. R. Ellis, R. Essig, J. J. Fan, M. Farina, J. L. Feng, P. J. Fox, J. Galloway, G. Giudice, J. Gluza, S. Gori, S. Guha, K. Hahn, T. Han, C. Helsens, A. Henriques, S. Iwamoto, T. Jelinski, S. Jung, F. Kahlhoefer, V. V. Khoze, D. Kim, J. Kopp, A. Kotwal, M. Kraemer, J. M. Lindert, J. Liu, H. K. Lou, J. Love, M. Low, P. A. N. Machado, F. Mahmoudi, J. Marrouche, A. Martin, K. Mohan, R. N. Mohapatra, G. Nardini, K. A. Olive, B. Ostdiek, G. Panico, T. Plehn, J. Proudfoot, Z. Qian, M. Reece, T. Rizzo, C. Roskas, J. Ruderman, R. Ruiz, F. Sala, E. Salvioni, P. Saraswat, T. Schell, K. Schmidt-Hoberg, J. Serra, Y. Shadmi, J. Shelton, C. Solans, M. Spannowsky, T. Srivastava, D. Stolarski, R. Szafron, M. Taoso, S. Tarem, A. Thalapillil, A. Thamm, Y. Tsai, C. Verhaaren, N. Vignaroli, J. R. Walsh, L. T. Wang, C. Weiland, J. Wells, C. Williams, A. Wulzer, W. Xue, F. Yu, B. Zheng, and J. Zheng, arXiv: 1606.00947.

  32. M. Mangano, G. Zanderighi, J. A. Aguilar Saavedra, S. Alekhin, S. Badger, C. W. Bauer, T. Becher, V. Bertone, M. Bonvini, S. Boselli, E. Bothmann, R. Boughezal, M. Cacciari, C. M. Carloni Calame, F. Caola, J. M. Campbell, S. Carrazza, M. Chiesa, L. Cieri, F. Cimaglia, F. Febres Cordero, P. Ferrarese, D. D’Enterria, G. Ferrera, X. Garcia i Tormo, M. V. Garzelli, E. Germann, V. Hirschi, T. Han, H. Ita, B. Jager, S. Kallweit, A. Karlberg, S. Kuttimalai, F. Krauss, A. J. Larkoski, J. Lindert, G. Luisoni, P. Maierhöfer, O. Mattelaer, H. Martinez, S. Moch, G. Montagna, M. Moretti, P. Nason, O. Nicrosini, C. Oleari, D. Pagani, A. Papaefstathiou, F. Petriello, F. Piccinini, M. Pierini, T. Pierog, S. Pozzorini, E. Re, T. Robens, J. Rojo, R. Ruiz, K. Sakurai, G. P. Salam, L. Salfelder, M. Schönherr, M. Schulze, S. Schumann, M. Selvaggi, A. Shivaji, A. Siodmok, P. Skands, P. Torrielli, F. Tramontano, I. Tsinikos, B. Tweedie, A. Vicini, S. Westhoff, M. Zaro, and D. Zeppenfeld, arXiv: 1607.01831.

  33. M. Low, and L. T. Wang, J. High Energ. Phys. 2014(8), 161 (2014), arXiv: 1404.0682.

    Google Scholar 

  34. M. Cirelli, F. Sala, and M. Taoso, J. High Energ. Phys. 2015(1), 41 (2015), arXiv: 1407.7058

    Google Scholar 

  35. H. Abramowicz, I. Abt, L. Adamczyk, M. Adamus, R. Aggarwal, S. Antonelli, O. Arslan, V. Aushev, Y. Aushev, O. Bachynska, A. N. Barakbaev, N. Bartosik, O. Behnke, J. Behr, U. Behrens, A. Bertolin, S. Bhadra, I. Bloch, V. Bokhonov, E. G. Boos, K. Borras, I. Brock, R. Brugnera, A. Bruni, B. Brzozowska, P. J. Bussey, A. Caldwell, M. Capua, C. D. Catterall, J. Chwastowski, J. Ciborowski, R. Ciesielski, A. M. Cooper-Sarkar, M. Corradi, F. Corriveau, G. DAgostini, R. K. Dementiev, R. C. E. Devenish, G. Dolinska, V. Drugakov, S. Dusini, J. Ferrando, J. Figiel, B. Foster, G. Gach, A. Garfagnini, A. Geiser, A. Gizhko, L. K. Gladilin, O. Gogota, Y. A. Golubkov, J. Grebenyuk, I. Gregor, G. Grzelak, O. Gueta, M. Guzik, W. Hain, G. Hartner, D. Hochman, R. Hori, Z. A. Ibrahim, Y. Iga, M. Ishitsuka, A. Iudin, F. Januschek, I. Kadenko, S. Kananov, T. Kanno, U. Karshon, M. Kaur, P. Kaur, L. A. Khein, D. Kisielewska, R. Klanner, U. Klein, N. Kondrashova, O. Kononenko, I. Korol, I. A. Korzhavina, A. Kotanski, U. Kotz, N. Kovalchuk, H. Kowalski, O. Kuprash, M. Kuze, B. B. Levchenko, A. Levy, V. Libov, S. Limentani, M. Lisovyi, E. Lobodzinska, W. Lohmann, B. Lohr, E. Lohrmann, A. Longhin, D. Lontkovskyi, O. Y. Lukina, J. Maeda, I. Makarenko, J. Malka, J. F. Martin, S. Mergelmeyer, F. Mohamad Idris, K. Mujkic, V. Myronenko, K. Nagano, A. Nigro, T. Nobe, D. Notz, R. J. Nowak, K. Olkiewicz, Y. Onishchuk, E. Paul, W. Perlanski, H. Perrey, N. S. Pokrovskiy, A. S. Proskuryakov, M. Przybycien, A. Raval, P. Roloff, I. Rubinsky, M. Ruspa, V. Samojlov, D. H. Saxon, M. Schioppa, W. B. Schmidke, U. Schneekloth, T. Schörner-Sadenius, J. Schwartz, L. M. Shcheglova, R. Shehzadi, R. Shevchenko, O. Shkola, I. Singh, I. O. Skillicorn, W. Slominski, V. Sola, A. Solano, A. Spiridonov, L. Stanco, N. Stefaniuk, A. Stern, T. P. Stewart, P. Stopa, J. Sztuk-Dambietz, D. Szuba, J. Szuba, E. Tassi, T. Temiraliev, K. Tokushuku, J. Tomaszewska, A. Trofymov, V. Trusov, T. Tsurugai, M. Turcato, O. Turkot, T. Tymieniecka, A. Verbytskyi, O. Viazlo, R. Walczak, W. A. T. Wan Abdullah, K. Wichmann, M. Wing, G. Wolf, S. Yamada, Y. Yamazaki, N. Zakharchuk, A. F. Zarnecki, L. Zawiejski, O. Zenaiev, B. O. Zhautykov, N. Zhmak, and D. S. Zotkin, J. High Energ. Phys. 2014(10), 33 (2014).

    Google Scholar 

  36. R. Mahbubani, P. Schwaller, and J. Zurita, J. High Energ. Phys. 2017(6), 119 (2017), arXiv: 1703.05327

    Google Scholar 

  37. R. Mahbubani, P. Schwaller, and J. Zurita, J. High Energ. Phys. 2017(10), 61 (2017).

    Google Scholar 

  38. R. Mahbubani, and J. Zurita, J. High Energ. Phys. 2018(12), 92 (2018), arXiv: 1806.08310.

    Google Scholar 

  39. T. Han, S. Mukhopadhyay, and X. Wang, Phys. Rev. D 98, 035026 (2018), arXiv: 1805.00015.

    ADS  Google Scholar 

  40. J. Bramante, P. J. Fox, A. Martin, B. Ostdiek, T. Plehn, T. Schell, and M. Takeuchi, Phys. Rev. D 91, 054015 (2015), arXiv: 1412.4789.

    ADS  Google Scholar 

  41. A. Berlin, T. Lin, M. Low, and L. T. Wang, Phys. Rev. D 91, 115002 (2015), arXiv: 1502.05044.

    ADS  Google Scholar 

  42. H. Fukuda, N. Nagata, H. Otono, and S. Shirai, Phys. Lett. B 781, 306 (2018), arXiv: 1703.09675.

    ADS  Google Scholar 

  43. M. Saito, R. Sawada, K. Terashi, and S. Asai, Eur. Phys. J. C 79, 469 (2019), arXiv: 1901.02987.

    ADS  Google Scholar 

  44. G. G. di Cortona, J. High Energ. Phys. 2015(5), 35 (2015), arXiv: 1412.5952.

    Google Scholar 

  45. C. Rogan, arXiv: 1006.2727.

  46. G. Aad, et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012), arXiv: 1207.7214.

    ADS  Google Scholar 

  47. S. Chatrchyan, et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012), arXiv: 1207.7235.

    ADS  Google Scholar 

  48. G. F. Giudice, T. Han, K. Wang, and L. T. Wang, Phys. Rev. D 81, 115011 (2010), arXiv: 1004.4902.

    ADS  Google Scholar 

  49. S. Gori, S. Jung, and L. T. Wang, J. High Energ. Phys. 2013(10), 191 (2013), arXiv: 1307.5952.

    ADS  Google Scholar 

  50. C. Han, A. Kobakhidze, N. Liu, A. Saavedra, L. Wu, and J. M. Yang, J. High Energ. Phys. 2014(2), 49 (2014), arXiv: 1310.4274.

    Google Scholar 

  51. P. Schwaller, and J. Zurita, J. High Energ. Phys. 2014(3), 60 (2014), arXiv: 1312.7350.

    Google Scholar 

  52. H. Baer, A. Mustafayev, and X. Tata, Phys. Rev. D 89, 055007 (2014), arXiv: 1401.1162.

    ADS  Google Scholar 

  53. Z. Han, G. D. Kribs, A. Martin, and A. Menon, Phys. Rev. D 89, 075007 (2014), arXiv: 1401.1235.

    ADS  Google Scholar 

  54. D. Egana-Ugrinovic, M. Low, and J. T. Ruderman, J. High Energ. Phys. 2018(5), 12 (2018), arXiv: 1801.05432

    Google Scholar 

  55. W. Beenakker, M. Klasen, M. Kramer, T. Plehn, M. Spira, and P. M. Zerwas, Phys. Rev. Lett. 100, 029901 (2008)

    ADS  Google Scholar 

  56. W. Beenakker, M. Klasen, M. Kramer, T. Plehn, M. Spira, and P. M. Zerwas, Phys. Rev. Lett. 83, 3780 (1999), arXiv: hep-ph/9906298.

    ADS  Google Scholar 

  57. A. Djouadi, M. M. Muhlleitner, and M. Spira, Acta Phys. Polon. B38, 635 (2007), arXiv: hep-ph/0609292.

    ADS  Google Scholar 

  58. K. A. Olive, Chin. Phys. C 40, 100001 (2016).

    Google Scholar 

  59. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, J. High Energ. Phys. 2014(7), 79 (2014), arXiv: 1405.0301.

    Google Scholar 

  60. T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energ. Phys. 2006(05), 026 (2006), arXiv: hep-ph/0603175.

    Google Scholar 

  61. J. de Favereau, et al. (DELPHES 3 Collaboration), J. High Energ. Phys. 2014(2), 57 (2014), arXiv: 1307.6346.

    Google Scholar 

  62. E. Conte, B. Fuks, and G. Serret, Comput. Phys. Commun. 184, 222 (2013), arXiv: 1206.1599.

    ADS  MathSciNet  Google Scholar 

  63. M. Tanabashi, et al. (Particle Data Group Collaboration), Phys. Rev. D 98, 030001 (2018).

    ADS  Google Scholar 

  64. F. Pedregosa, and G. Varoquaux, J. Machine Learning Res. 12, 2825 (2011).

    MathSciNet  Google Scholar 

  65. J. Shelton, in Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: Searching for New Physics at Small and Large Scales (TASI 2012): Jet Substructure, Boulder, Colorado, June 4–29, 2012. pp. 303–340, arXiv: 1302.0260.

  66. A. Schwartzman, M. Kagan, L. Mackey, B. Nachman, and L. De Oliveira, J. Phys.-Conf. Ser. 762, 012035 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShuFang Su.

Additional information

This research was supported in part by the National Science Foundation, USA (Grant No. NSF PHY-1748958). The research activities of AP and SS were supported in part by the Department of Energy (Grant No. DEFG02-13ER41976/de-sc0009913). We would like to thank Matt Leone and Ken Johns for helpful discussions. An allocation of computer time from the UA Research Computing High Performance Computing (HPC) and High Throughput Computing (HTC) at the University of Arizona is gratefully acknowledged. We also thank KITP for its hospitality when this draft was completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyarelal, A., Su, S. Higgs assisted razor search for Higgsinos at a 100 TeV pp collider. Sci. China Phys. Mech. Astron. 63, 101011 (2020). https://doi.org/10.1007/s11433-019-1517-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1517-5

Navigation