Skip to main content
Log in

Single particles in a reflection-asymmetric potential

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Single particles moving in a reflection-asymmetric potential are investigated by solving the Schrödinger equation of the reflection-asymmetric Nilsson Hamiltonian with the imaginary time method in 3D lattice space and the harmonic oscillator basis expansion method. In the 3D lattice calculation, the l2 divergence problem is avoided by introducing a damping function, and the〈l2 N term in the non-spherical case is calculated by introducing an equivalent N-independent operator. The efficiency of these numerical techniques is demonstrated by solving the spherical Nilsson Hamiltonian in 3D lattice space. The evolution of the single-particle levels in a reflection-asymmetric potential is obtained and discussed by the above two numerical methods, and their consistency is shown in the obtained single-particle energies with the differences smaller than 10−4 [ħω0].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bohr, and B. R. Mottelson, Nuclear Structure vol. II (World Scientific, Singapore, 1975), pp.1–203.

    Google Scholar 

  2. P. Ring, and P. Schuck, The Nuclear Many-body Problem (Springer Science & Business Media, Berlin/Heidelberg, 2004), pp.1–32.

    Google Scholar 

  3. I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, and N. Takahashi, Phys. Rev. Lett. 55, 2676 (1985).

    Article  ADS  Google Scholar 

  4. J. Meng, and P. Ring, Phys. Rev. Lett. 77, 3963 (1996).

    Article  ADS  Google Scholar 

  5. J. Meng, and P. Ring, Phys. Rev. Lett. 80, 460 (1998).

    Article  ADS  Google Scholar 

  6. J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Particle Nucl. Phys. 57, 470 (2006).

    Article  ADS  Google Scholar 

  7. S. G. Zhou, J. Meng, P. Ring, and E. G. Zhao, Phys. Rev. C 82, 011301 (2010), arXiv: 0909.1600.

    Article  ADS  Google Scholar 

  8. J. Meng, and S. G. Zhou, J. Phys. G-Nucl. Part. Phys. 42, 093101 (2015), arXiv: 1507.01079.

    Article  ADS  Google Scholar 

  9. P. J. Twin, B. M. Nyakó, A. H. Nelson, J. Simpson, M. A. Bentley, H. W. Cranmer-Gordon, P. D. Forsyth, D. Howe, A. R. Mokhtar, J. D. Morrison, J. F. Sharpey-Schafer, and G. Sletten, Phys. Rev. Lett. 57, 811 (1986).

    Article  ADS  Google Scholar 

  10. S. Frauendorf, Y. Gu, and J. Sun, Int. J. Mod. Phys. E 20, 465 (2011), arXiv: 1109.1842.

    Article  ADS  Google Scholar 

  11. Y. Y. Wang, Z. Shi, Q. B. Chen, S. Q. Zhang, and C. Y. Song, Phys. Rev. C 93, 044309 (2016), arXiv: 1604.04132.

    Article  ADS  Google Scholar 

  12. S. Frauendorf, and S. Jie Meng, Nucl. Phys. A 617, 131 (1997).

    Article  ADS  Google Scholar 

  13. S. Frauendorf, Rev. Mod. Phys. 73, 463 (2001).

    Article  ADS  Google Scholar 

  14. J. Meng, and S. Q. Zhang, J. Phys. G-Nucl. Part. Phys. 37, 064025 (2010), arXiv: 1002.0907.

    Article  ADS  Google Scholar 

  15. S. W. Ødegå, G. B. Hagemann, D. R. Jensen, M. Bergström, B. Herskind, G. Sletten, S. Törmänen, J. N. Wilson, P. O. Tjøm, I. Hamamoto, K. Spohr, H. Hübel, A. Görgen, G. Schönwasser, A. Bracco, S. Leoni, A. Maj, C. M. Petrache, P. Bednarczyk, and D. Curien, Phys. Rev. Lett. 86, 5866 (2001).

    Article  ADS  Google Scholar 

  16. S. G. Zhou, Phys. Scr. 91, 063008 (2016), arXiv: 1605.00956.

    Article  ADS  Google Scholar 

  17. M. G. Mayer, Phys. Rev. 75, 1969 (1949).

    Article  ADS  Google Scholar 

  18. J. Rainwater, Phys. Rev. 79, 432 (1950).

    Article  ADS  Google Scholar 

  19. A. Bohr, and B. R. Mottelson, Mat. Fys. Medd. 27, 16 (1953).

    Google Scholar 

  20. S. G. Nilsson, Dan. Mat. Fys. Medd. 29, 1 (1955).

    Google Scholar 

  21. F. S. Stephens, F. Asaro, and I. Perlman, Phys. Rev. 100, 1543 (1955).

    Article  ADS  Google Scholar 

  22. V. Strutinsky, At. Energ. 4, 150 (1956).

    Google Scholar 

  23. K. Lee, and D. R. Inglis, Phys. Rev. 108, 774 (1957).

    Article  ADS  Google Scholar 

  24. I. Dutt, and P. Mukherjee, Prog. Theor. Phys. 22, 814 (1959).

    Article  ADS  Google Scholar 

  25. M. L. Rustgi, and S. N. Mukherjee, Phys. Rev. 131, 2615 (1963).

    Article  ADS  Google Scholar 

  26. P. Vogel, Phys. Lett. B 25, 65 (1967).

    Article  ADS  Google Scholar 

  27. P. Moller, S. G. Nilsson, A. Sobiczewski, Z. Szymanski, and S. Wycech, Phys. Lett. B 30, 223 (1969).

    Article  ADS  Google Scholar 

  28. G. Leander, and S. E. Larsson, Nucl. Phys. A 239, 93 (1975).

    Article  ADS  Google Scholar 

  29. J. Meng, K. Sugawara-Tanabe, S. Yamaji, and A. Arima, Phys. Rev. C 59, 154 (1999).

    Article  ADS  Google Scholar 

  30. T. S. Chen, H. F. Lü, J. Meng, S. Q. Zhang, and S. G. Zhou, Chin. Phys. Lett. 20, 358 (2003).

    Article  ADS  Google Scholar 

  31. S. G. Zhou, J. Meng, and P. Ring, Phys. Rev. Lett. 91, 262501 (2003).

    Article  ADS  Google Scholar 

  32. H. Liang, J. Meng, and S. G. Zhou, Phys. Rep. 570, 1 (2015), arXiv: 1411.6774.

    Article  MathSciNet  ADS  Google Scholar 

  33. J. Meng, ed., Relativistic Density Functional for Nuclear Structure, vol. 10 of International Review of Nuclear Physics (World Scientific, Singapore, 2016), pp. 219–262.

  34. N. Li, M. Shi, J. Y. Guo, Z. M. Niu, and H. Liang, Phys. Rev. Lett. 117, 062502 (2016).

    Article  ADS  Google Scholar 

  35. A. V. Afanasjev, D. B. Fossan, G. J. Lane, and I. Ragnarsson, Phys. Rep. 322, 1 (1999).

    Article  ADS  Google Scholar 

  36. D. Vretenar, A. Afanasjev, G. Lalazissis, and P. Ring, Phys. Rep. 409, 101 (2005).

    Article  ADS  Google Scholar 

  37. T. Nikšić, Z. P. Li, D. Vretenar, L. Próchniak, J. Meng, and P. Ring, Phys. Rev. C 79, 034303 (2009), arXiv: 0811.0233.

    Article  ADS  Google Scholar 

  38. Z. P. Li, T. Nikšić, D. Vretenar, J. Meng, G. A. Lalazissis, and P. Ring, Phys. Rev. C 79, 054301 (2009), arXiv: 0904.1487.

    Article  ADS  Google Scholar 

  39. P.W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Rev. Lett. 107, 122501 (2011), arXiv: 1105.3622.

    Article  ADS  Google Scholar 

  40. J. Meng, and P. Zhao, Phys. Scr. 91, 053008 (2016), arXiv: 1604.02213.

    Article  ADS  Google Scholar 

  41. J. Meng, J. Peng, S. Q. Zhang, and P. W. Zhao, Front. Phys. 8, 55 (2013), arXiv: 1301.1808.

    Article  Google Scholar 

  42. J. M. Yao, N. Itagaki, and J. Meng, Phys. Rev. C 90, 054307 (2014).

    Article  ADS  Google Scholar 

  43. J. M. Yao, E. F. Zhou, and Z. P. Li, Phys. Rev. C 92, 041304 (2015), arXiv: 1507.03298.

    Article  ADS  Google Scholar 

  44. P. W. Zhao, N. Itagaki, and J. Meng, Phys. Rev. Lett. 115, 022501 (2015), arXiv: 1410.3986.

    Article  ADS  Google Scholar 

  45. E. F. Zhou, J. M. Yao, Z. P. Li, J. Meng, and P. Ring, Phys. Lett. B 753, 227 (2016), arXiv: 1510.05232.

    Article  ADS  Google Scholar 

  46. Y. K. Wang, Phys. Rev. C 96, 054324 (2017), arXiv: 1708.06117.

    Article  ADS  Google Scholar 

  47. L. S. Geng, J. Meng, and T. Hiroshi, Chin. Phys. Lett. 24, 1865 (2007), arXiv: 0706.0491.

    Article  ADS  Google Scholar 

  48. N. Wang, and L. Guo, Sci. China Ser. G-Phys. Mech. Astron. 52, 1574 (2009).

    Article  ADS  Google Scholar 

  49. J. Y. Guo, P. Jiao, and X. Z. Fang, Phys. Rev. C 82, 047301 (2010).

    Article  ADS  Google Scholar 

  50. H. Huang, P. Jiao, and J. Y. Guo, Sci. Sin.-Phys. Mech. Astron. 40, 1416 (2010).

    Google Scholar 

  51. W. Zhang, Z. P. Li, and S. Q. Zhang, Chin. Phys. C 34, 1094 (2010), arXiv: 1008.1888.

    Article  ADS  Google Scholar 

  52. H. Huang, and J. Y. Guo, Sci. Sin.-Phys. Mech. Astron. 43, 69 (2013).

    Article  Google Scholar 

  53. W. Zhang, and X. M. Chen, Sci. Sin.-Phys. Mech. Astron. 46, 012022 (2016).

    Article  Google Scholar 

  54. M. Bender, P. H. Heenen, and P. G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).

    Article  ADS  Google Scholar 

  55. B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 85, 011301 (2012), arXiv: 1110.6769.

    Article  ADS  Google Scholar 

  56. J. Zhao, B. N. Lu, T. Nikšić, and D. Vretenar, Phys. Rev. C 92, 064315 (2015).

    Article  ADS  Google Scholar 

  57. J. Zhao, B. N. Lu, T. Nikšić, D. Vretenar, and S. G. Zhou, Phys. Rev. C 93, 044315 (2016), arXiv: 1603.00992.

    Article  ADS  Google Scholar 

  58. K. T. R. Davies, H. Flocard, S. Krieger, and M. S. Weiss, Nucl. Phys. A 342, 111 (1980).

    Article  ADS  Google Scholar 

  59. K. Hagino, and Y. Tanimura, Phys. Rev. C 82, 057301 (2010), arXiv: 1008.4995.

    Article  ADS  Google Scholar 

  60. Y. Zhang, H. Z. Liang, and J. Meng, Chin. Phys. C 33, 113 (2009).

    Article  ADS  Google Scholar 

  61. Y. Zhang, H. Z. Liang, and J. Meng, Chin. Phys. Lett. 26, 092401 (2009), arXiv: 0910.4078.

    Article  ADS  Google Scholar 

  62. Y. Zhang, H. Liang, and J. Meng, Int. J. Mod. Phys. E 19, 55 (2010), arXiv: 0905.2505.

    Article  ADS  Google Scholar 

  63. J. A. Maruhn, P. G. Reinhard, P. D. Stevenson, and A. S. Umar, Comput. Phys. Commun. 185, 2195 (2014), arXiv: 1310.5946.

    Article  ADS  Google Scholar 

  64. Y. Tanimura, K. Hagino, and H. Z. Liang, Prog. Theor. Exp. Phys. 2015, 073D01 (2015), arXiv: 1411.7804.

    Article  Google Scholar 

  65. Z. X. Ren, S. Q. Zhang, and J. Meng, Phys. Rev. C 95, 024313 (2017), arXiv: 1612.09429.

    Article  ADS  Google Scholar 

  66. S. G. Nilsson, and I. Ragnarsson, Shapes and Shells in Nuclear Structure (Cambridge University Press, Cambridge, 1995), p. 61.

    Google Scholar 

  67. S. G. Nilsson, C. F. Tsang, A. Sobiczewski, Z. Szymański, S. Wycech, C. Gustafson, I. L. Lamm, P. Möller, and B. Nilsson, Nucl. Phys. A 131, 1 (1969).

    Article  ADS  Google Scholar 

  68. P. G. Reinhard, and R. Y. Cusson, Nucl. Phys. A 378, 418 (1982).

    Article  ADS  Google Scholar 

  69. V. Blum, G. Lauritsch, J. A. Maruhn, and P. G. Reinhard, J. Comput. Phys. 100, 364 (1992).

    Article  ADS  Google Scholar 

  70. A. N. Bohr, and B. R. Mottelson, Dan. Mat. Fys. Medd. 27, 1 (1953).

    Google Scholar 

  71. D. A. Zaikin, Nucl. Phys. 86, 638 (1966).

    Article  Google Scholar 

  72. G. A. Leander, and R. K. Sheline, Nucl. Phys. A 413, 375 (1984).

    Article  ADS  Google Scholar 

  73. C. Liu, S. Y. Wang, R. A. Bark, S. Q. Zhang, J. Meng, B. Qi, P. Jones, S. M. Wyngaardt, J. Zhao, C. Xu, S. G. Zhou, S. Wang, D. P. Sun, L. Liu, Z. Q. Li, N. B. Zhang, H. Jia, X. Q. Li, H. Hua, Q. B. Chen, Z. G. Xiao, H. J. Li, L. H. Zhu, T. D. Bucher, T. Dinoko, J. Easton, K. Juhász, A. Kamblawe, E. Khaleel, N. Khumalo, E. A. Lawrie, J. J. Lawrie, S. N. T. Majola, S. M. Mullins, S. Murray, J. Ndayishimye, D. Negi, S. P. Noncolela, S. S. Ntshangase, B. M. Nyakó, J. N. Orce, P. Papka, J. F. Sharpey-Schafer, O. Shirinda, P. Sithole, M. A. Stankiewicz, and M. Wiedeking, Phys. Rev. Lett. 116, 112501 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhengXue Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ren, Z. Single particles in a reflection-asymmetric potential. Sci. China Phys. Mech. Astron. 61, 082012 (2018). https://doi.org/10.1007/s11433-018-9213-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9213-7

Keywords

Navigation