Skip to main content
Log in

Entropy method of measuring and evaluating periodicity of quasi-periodic trajectories

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

This paper presents a method for measuring the periodicity of quasi-periodic trajectories by applying discrete Fourier transform (DFT) to the trajectories and analyzing the frequency domain within the concept of entropy. Having introduced the concept of entropy, analytical derivation and numerical results indicate that entropies increase as a logarithmic function of time. Periodic trajectories typically have higher entropies, and trajectories with higher entropies mean the periodicities of the motions are stronger. Theoretical differences between two trajectories expressed as summations of trigonometric functions are also derived analytically. Trajectories in the Henon-Heiles system and the circular restricted three-body problem (CRTBP) are analyzed with the indicator entropy and compared with orthogonal fast Lyapunov indicator (OFLI). The results show that entropy is a better tool for discriminating periodicity in quasiperiodic trajectories than OFLI and can detect periodicity while excluding the spirals that are judged as periodic cases by OFLI. Finally, trajectories in the vicinity of 243 Ida and 6489 Golevka are considered as examples, and the numerical results verify these conclusions. Some trajectories near asteroids look irregular, but their higher entropy values as analyzed by this method serve as evidence of frequency regularity in three directions. Moreover, these results indicate that applying DFT to the trajectories in the vicinity of irregular small bodies and calculating their entropy in the frequency domain provides a useful quantitative analysis method for evaluating orderliness in the periodicity of quasi-periodic trajectories within a given time interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. S. Belton, J. Veverka, P. Thomas, P. Helfenstein, D. Simonelli, C. Chapman, M. E. Davies, R. Greeley, R. Greenberg, J. Head, S. Murchie, K. Klaasen, T. V. Johnson, A. McEwen, D. Morrison, G. Neukum, F. Fanale, C. Anger, M. Carr, and C. Pilcher, Science 257, 1647 (1992).

    Article  ADS  Google Scholar 

  2. D. S. Lauretta, and OSIRIS-Rex Team, in An Overview of the OSIRISREx Asteroid Sample Return Mission: Proceedings of the 43rd Lunar and Planetary Science Conference, The Woodlands, Texas (2012).

    Google Scholar 

  3. J. Veverka, B. Farquhar, M. Robinson, P. Thomas, S. Murchie, A. Harch, P. G. Antreasian, S. R. Chesley, J. K. Miller, W. M. Owen, B. G. Williams, D. Yeomans, D. Dunham, G. Heyler, M. Holdridge, R. L. Nelson, K. E. Whittenburg, J. C. Ray, B. Carcich, A. Cheng, C. Chapman, J. F. Bell, M. Bell, B. Bussey, B. Clark, D. Domingue, M. J. Gaffey, E. Hawkins, N. Izenberg, J. Joseph, R. Kirk, P. Lucey, M. Malin, L. McFadden, W. J. Merline, C. Peterson, L. Prockter, J. Warren, and D. Wellnitz, Nature 413, 390 (2001).

    Article  ADS  Google Scholar 

  4. K. H. Glassmeier, H. Boehnhardt, D. Koschny, E. Kührt, and I. Richter, Space Sci. Rev. 128, 1 (2007).

    Article  ADS  Google Scholar 

  5. A. Tsuchiyama, M. Uesugi, T. Matsushima, T. Michikami, T. Kadono, T. Nakamura, K. Uesugi, T. Nakano, S. A. Sandford, R. Noguchi, T. Matsumoto, J. Matsuno, T. Nagano, Y. Imai, A. Takeuchi, Y. Suzuki, T. Ogami, J. Katagiri, M. Ebihara, T. R. Ireland, F. Kitajima, K. Nagao, H. Naraoka, T. Noguchi, R. Okazaki, H. Yurimoto, M. E. Zolensky, T. Mukai, M. Abe, T. Yada, A. Fujimura, M. Yoshikawa, and J. Kawaguchi, Science 333, 1125 (2011).

    Article  ADS  Google Scholar 

  6. C. T. Russell, and C. A. Raymond, Space. Sci. Rev. 163, 3 (2011).

    Article  ADS  Google Scholar 

  7. Y. Guo, and R. W. Farquhar, Space. Sci. Rev. 140, 49 (2008).

    Article  ADS  Google Scholar 

  8. X. Wang, Y. Jiang, and S. Gong, Astrophys. Space Sci. 353, 105 (2014), arXiv: 1403.5025

    Article  ADS  Google Scholar 

  9. X. Liu, H. Baoyin, and X. Ma, Astrophys. Space Sci. 333, 409 (2011), arXiv: 1108.4636

    Article  ADS  Google Scholar 

  10. Y. Jiang, J. A. Schmidt, H. Li, X. Liu, and Y. Yang, Astrodynamics 2, 69 (2018).

    Article  Google Scholar 

  11. X. Zeng, and K. T. Alfriend, Astrodynamics 1, 41 (2017).

    Article  Google Scholar 

  12. L. Lan, Y. Ni, Y. Jiang, and J. Li, Acta Mech. Sin. 34, 214 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  13. H. Yang, H. Baoyin, X. Bai, and J. Li, Astrophys. Space Sci. 362, 27 (2017).

    Article  ADS  Google Scholar 

  14. Y. Jiang, H. Baoyin, X. Wang, Y. Yu, H. Li, C. Peng, and Z. Zhang, Nonlinear Dyn. 83, 231 (2016).

    Article  Google Scholar 

  15. A. Riaguas, A. Elipe, and M. Lara, Celestial Mech. Dynamical Astron. 73, 169 (1999).

    Article  ADS  Google Scholar 

  16. S. Gutierrez-Romero, J. F. Palacian, and P. Yanguas, Monogr Real Acad Cienc Zaragoza 25, 137 (2004).

    Google Scholar 

  17. W. Hu, and D. J. Scheeres, Planet. Space Sci. 52, 685 (2004).

    Article  ADS  Google Scholar 

  18. W. D. Hu, and D. J. Scheeres, Chin. J. Astron. Astrophys. 8, 108 (2008).

    Article  ADS  Google Scholar 

  19. X. D. Liu, H. X. Baoyin, and X. R. Ma, Sci. China-Phys. Mech. Astron. 56, 818 (2013).

    Article  ADS  Google Scholar 

  20. X. Zeng, F. Jiang, J. Li, and H. Baoyin, Astrophys. Space Sci. 356, 29 (2015).

    Article  ADS  Google Scholar 

  21. D. J. Scheeres, S. J. Ostro, R. S. Hudson, and R. A. Werner, Icarus 121, 67 (1996).

    Article  ADS  Google Scholar 

  22. R. A. Werner, Celestial Mech. Dynamical Astron. 59, 253 (1994).

    Article  ADS  Google Scholar 

  23. X. Zeng, K. T. Alfriend, and S. R. Vadali, J. Guid. Control Dyn. 37, 674 (2014).

    Article  ADS  Google Scholar 

  24. X. Zeng, and X. Liu, IEEE Trans. Aerosp. Electron. Syst. 53, 1221 (2017).

    Article  ADS  Google Scholar 

  25. Y. Yu, and H. Baoyin, Mon. Not. R. Astron. Soc. 427, 872 (2012).

    Article  ADS  Google Scholar 

  26. K. Meyer, G. Hall, and D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-body Problem, 2nd ed. (Springer-Verlag, New York, 2009), Chapt. 9.

    MATH  Google Scholar 

  27. Y. Ni, H. Baoyin, and J. Li, Orbit Dynamics in the Vicinity of Asteroids with Solar Perturbation: Proceedings of the International Astronautical Congress, Vol. 7, (2014), pp. 4610–4620.

    Google Scholar 

  28. Y. Jiang, Y. Yu, and H. Baoyin, Nonlinear Dyn. 81, 119 (2015).

    Article  Google Scholar 

  29. Y. Jiang, H. Baoyin, and H. Li, Astrophys. Space Sci. 360, 63 (2015), arXiv: 1511.07926

    Article  ADS  Google Scholar 

  30. J. E. Marsden, and T. S. Ratiu, Introduction to Mechanics and Symmetry (Springer-Verlag, New York, 1999), Chapt. 5.

    Book  MATH  Google Scholar 

  31. R. A. Broucke, and A. Elipe, Reg. Chaot. Dyn. 10, 129 (2005).

    Article  Google Scholar 

  32. Y. Yu, H. Baoyin, and Y. Jiang, Mon. Not. R. Astron. Soc. 453, 3270 (2015).

    Article  ADS  Google Scholar 

  33. Y. Ni, Y. Jiang, and H. Baoyin, Astrophys. Space Sci. 361, 170 (2016), arXiv: 1604.07226

    Article  ADS  Google Scholar 

  34. D. C. Davis, and K. C. Howell, Acta Astronaut. 69, 1038 (2011).

    Article  ADS  Google Scholar 

  35. D. C. Davis, and K. C. Howell, J. Guid. Control Dyn. 35, 116 (2012).

    Article  ADS  Google Scholar 

  36. D. J. Scheeres, Acta Astronaut. 72, 1 (2012).

    Article  ADS  Google Scholar 

  37. D. J. Scheeres, J. Guid. Control Dyn. 35, 987 (2012).

    Article  Google Scholar 

  38. T. G. G. Chanut, O. C. Winter, and M. Tsuchida, Mon. Not. R. Astron. Soc. 438, 2672 (2014).

    Article  ADS  Google Scholar 

  39. A. Elipe, and M. Lara, J Astronaut. Sci. 51, 391 (2003).

    MathSciNet  Google Scholar 

  40. E. Ott, Chaos in Dynamical Systems, 2nd ed. (Cambridge University Press, New York, 2002), Chapt. 6.

    Book  MATH  Google Scholar 

  41. H. L. Swinney, and J. P. Gollub, Phys. Today 31, 41 (1978).

    Article  Google Scholar 

  42. P. Robutel, and J. Laskar, Icarus 152, 4 (2001).

    Article  ADS  Google Scholar 

  43. D. A. Dei Tos, and F. Topputo, Adv. Space Res. 59, 2117 (2017).

    Article  ADS  Google Scholar 

  44. G. Benettin, L. Galgani, A. Giorgilli, and J. M. Strelcyn, Meccanica 15, 9 (1980).

    Article  ADS  Google Scholar 

  45. M. Fouchard, E. Lega, C. Froeschlé, and C. Froeschlé, Celest. Mech. Dyn. Astron. 83, 205 (2002).

    Article  ADS  Google Scholar 

  46. P. M. Cincotta, and C. Simó, Astron. Astrophys. Suppl. Ser. 147, 205 (2000).

    Article  ADS  Google Scholar 

  47. A. N. Kolmogorov, Proc. USSR Acad. Sci. 119, 861 (1958).

    Google Scholar 

  48. Y. G. Sinai, Proc. USSR Acad. Sci. 124, 768 (1959).

    Google Scholar 

  49. M. Henon, and C. Heiles, Astron. J. 69, 73 (1964).

    Article  ADS  Google Scholar 

  50. V. Szebehely, Theory of Orbits: The Restricted Problem of Three Bodies (Academic, New York, 1967), p. 126.

    Book  MATH  Google Scholar 

  51. X. Zeng, S. Gong, J. Li, and K. T. Alfriend, J. Guidance Control Dyn. 39, 1223 (2016).

    Article  ADS  Google Scholar 

  52. H. W. Yang, X. Y. Zeng, and H. Baoyin, Res. Astron. Astrophys. 15, 1571 (2015).

    Article  ADS  Google Scholar 

  53. M. Hénon, Ann. Astrophys. 28, 499 (1965).

    ADS  Google Scholar 

  54. L. Wilson, K. Keil, and S. J. Love, Meteoritics Planet. Sci. 34, 479 (1999).

    Article  ADS  Google Scholar 

  55. D. Vokrouhlický, D. Nesvorný, and W. F. Bottke, Nature 425, 147 (2003).

    Article  ADS  Google Scholar 

  56. S. R. Chesley, S. J. Ostro, D. Vokrouhlicky, D. Capek, J. D. Giorgini, M. C. Nolan, J. L. Margot, A. A. Hine, L. A. M. Benner, and A. B. Chamberlin, Science 302, 1739 (2003).

    Article  ADS  Google Scholar 

  57. R. S. Hudson, S. J. Ostro, R. F. Jurgens, K. D. Rosema, J. D. Giorgini, R. Winkler, R. Rose, D. Choate, R. A. Cormier, C. R. Franck, R. Frye, D. Howard, D. Kelley, R. Littlefair, M. A. Slade, L. A. M. Benner, M. L. Thomas, D. L. Mitchell, P. W. Chodas, D. K. Yeomans, D. J. Scheeres, P. Palmer, A. Zaitsev, Y. Koyama, A. Nakamura, A. W. Harris, and M. N. Meshkov, Icarus 148, 37 (2000).

    Article  ADS  Google Scholar 

  58. C. E. Neese, Small Body Radar Shape Models V2.0. EAR-A-5-DDRRADARSHAPE-MODELS-V2.0 (NASA Planetary Data System, 2004).

    Google Scholar 

  59. Y. Yu, and H. Baoyin, Astron. J. 143, 62 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Junfeng.

Additional information

Citation: Y. Ni, K. Turitsyn, H. Baoyin, and J. Li, Entropy method of measuring and evaluating periodicity of quasi-periodic trajectories, Sci. China-Phys. Mech. Astron. 61, 064511 (2018), https://doi.org/10.1007/s11433-017-9161-8

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, Y., Turitsyn, K., Baoyin, H. et al. Entropy method of measuring and evaluating periodicity of quasi-periodic trajectories. Sci. China Phys. Mech. Astron. 61, 064511 (2018). https://doi.org/10.1007/s11433-017-9161-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9161-8

Keywords

PACS number(s)

Navigation