Skip to main content
Log in

Molecular mechanism of adsorption/desorption hysteresis: dynamics of shale gas in nanopores

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Understanding the adsorption and desorption behavior of methane has received considerable attention since it is one of the crucial aspects of the exploitation of shale gas. Unexpectedly, obvious hysteresis is observed from the ideally reversible physical sorption of methane in some experiments. However, the underlying mechanism still remains an open problem. In this study, Monte Carlo (MC) and molecular dynamics (MD) simulations are carried out to explore the molecular mechanisms of adsorption/desorption hysteresis. First, a detailed analysis about the capillary condensation of methane in micropores is presented. The influence of pore width, surface strength, and temperature on the hysteresis loop is further investigated. It is found that a disappearance of hysteresis occurs above a temperature threshold. Combined with the phase diagram of methane, we explicitly point out that capillary condensation is inapplicable for the hysteresis of shale gas under normal temperature conditions. Second, a new mechanism, variation of pore throat size, is proposed and studied. For methane to pass through the throat, a certain energy is required due to the repulsive interaction. The required energy increases with shrinkage of the throat, such that the originally adsorbed methane cannot escape through the narrowed throat. These trapped methane molecules account for the hysteresis. Furthermore, the hysteresis loop is found to increase with the increasing pressure and decreasing temperature. We suggest that the variation of pore throat size can explain the adsorption/desorption hysteresis of shale gas. Our conclusions and findings are of great significance for guiding the efficient exploitation of shale gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Arora, and Y. Cai, Appl. Energy 120, 95 (2014).

    Article  Google Scholar 

  2. K. A. Bowker, AAPG Bull. 91, 523 (2007).

    Article  Google Scholar 

  3. D. Cao, X. Zhang, J. Chen, W. Wang, and J. Yun, J. Phys. Chem. B 107, 13286 (2003).

    Article  Google Scholar 

  4. J. N. Armor, J. Energy Chem. 22, 21 (2013).

    Article  Google Scholar 

  5. J. Yao, H. Sun, Z. Q. Huang, L. Zhang, Q. D. Zeng, H. G. Sui, and D. Y. Fan, Sci. Sin.-Phys. Mech. Astron. 43, 1527 (2013).

    Article  Google Scholar 

  6. Y. Chen, L. Wei, M. Mastalerz, and A. Schimmelmann, Int. J. Coal-Geol. 138, 103 (2015).

    Article  Google Scholar 

  7. P. Kowalczyk, H. Tanaka, K. Kaneko, A. P. Terzyk, and D. D. Do, Langmuir 21, 5639 (2005).

    Article  Google Scholar 

  8. K. Mosher, J. He, Y. Liu, E. Rupp, and J. Wilcox, Int. J. Coal Geol. 109-110, 36 (2013).

    Article  Google Scholar 

  9. H. A. Wu, J. Chen, and H. Liu, J. Phys. Chem. C 119, 13652 (2015).

    Article  Google Scholar 

  10. X. Zhu, and Y. P. Zhao, J. Phys. Chem. C 118, 17737 (2014).

    Article  Google Scholar 

  11. P. B. Balbuena, and K. E. Gubbins, Langmuir 9, 1801 (1993).

    Article  Google Scholar 

  12. S. A. Al-Muhtaseb, J. Chem. Eng. Data 55, 313 (2010).

    Article  Google Scholar 

  13. W. Guo, W. Xiong, S. Gao, Z. Hu, H. Liu, and R. Yu, Pet. Exploration Dev. 40, 514 (2013).

    Article  Google Scholar 

  14. J. He, Y. Shi, S. Ahn, J. W. Kang, and C. H. Lee, J. Phys. Chem. B 114, 4854 (2010).

    Article  Google Scholar 

  15. K. Jessen, G. Q. Tang, and A. R. Kovscek, Transp. Porous Media 73, 141 (2008).

    Article  Google Scholar 

  16. B. J. Sun, Y. L. Zhang, Q. J. Du, and Z. H. Shen, J. China Univ. Petrol. 37, 95 (2013).

    Google Scholar 

  17. F. D. Zhou, F. Hussain, Z. H. Guo, S. Yanici, and Y. Cinar, Energy Explor. Exploit. 31, 645 (2013).

    Article  Google Scholar 

  18. B. Y. Li, A. Mehmani, J. H. Chen, D. T. Georgi, and G. D. Jin, in Proceedings of SPE Annual Technical Conference and Exhibition, New Orleans, USA, 30 September-2 October 2013 (SPE, New Orleans, 2013).

    Google Scholar 

  19. S. Harpalani, B. K. Prusty, and P. Dutta, Energy Fuels 20, 1591 (2006).

    Article  Google Scholar 

  20. K. Wang, G. Wang, T. Ren, and Y. Cheng, Int. J. Coal Geol. 132, 60 (2014).

    Article  Google Scholar 

  21. C. Fan, Y. Zeng, D. D. Do, and D. Nicholson, Phys. Chem. Chem. Phys. 16, 12362 (2014).

    Article  Google Scholar 

  22. Y. Zeng, C. Fan, D. D. Do, and D. Nicholson, J. Phys. Chem. C 118, 3172 (2014).

    Article  Google Scholar 

  23. C. Fan, Y. Zeng, D. D. Do, and D. Nicholson, Chem. Eng. Sci. 121, 313 (2015).

    Article  Google Scholar 

  24. P. T. M. Nguyen, D. D. Do, and D. Nicholson, Langmuir 29, 2927 (2013).

    Article  Google Scholar 

  25. Y. Zeng, P. Phadungbut, D. D. Do, and D. Nicholson, J. Phys. Chem. C 118, 25496 (2014).

    Article  Google Scholar 

  26. N. Klomkliang, D. D. Do, and D. Nicholson, Adsorption 19, 1273 (2013).

    Article  Google Scholar 

  27. T. Chen, X. T. Feng, and Z. Pan, Int. J. Coal Geol. 150-151, 64 (2015).

    Article  Google Scholar 

  28. Y. W. Ju, B. Jiang, Q. L. Hou, Y. J. Tan, G. L. Wang, and W. J. Xiao, Chin. Sci. Bull. 54, 88 (2009).

    Article  Google Scholar 

  29. A. Busch, Y. Gensterblum, and B. M. Krooss, Int. J. Coal Geol. 55, 205 (2003).

    Article  Google Scholar 

  30. P. Dutta, S. Bhowmik, and S. Das, Int. J. Coal Geol. 85, 289 (2011).

    Article  Google Scholar 

  31. E. Battistutta, P. van Hemert, M. Lutynski, H. Bruining, and K. H. Wolf, Int. J. Coal Geol. 84, 39 (2010).

    Article  Google Scholar 

  32. A. L. Goodman, A. Busch, G. J. Duffy, J. E. Fitzgerald, K. A. M. Gasem, Y. Gensterblum, B. M. Krooss, J. Levy, E. Ozdemir, Z. Pan, R. L. Robinson,, K. Schroeder, M. Sudibandriyo, and C. M. White, Energy Fuels 18, 1175 (2004).

    Article  Google Scholar 

  33. Y. Ma, N. N. Zhong, H. Han, D. H. Li, Y. Zhang, and L. J. Cheng, Sci. China Earth Sci. 57, 3027 (2014).

    Article  Google Scholar 

  34. L. Y. Wang, F. C. Wang, F. Q. Yang, and H. A. Wu, Sci. China-Phys. Mech. Astron. 57, 2152 (2014).

    Article  ADS  Google Scholar 

  35. Y. P. Zhao, Nano and Mesoscopic Mechanics (Science Press, Beijing, 2014).

  36. K. Mosher, The Impact of Pore Size on Methane and CO2 Adsorption in Carbon, Dissertation for the Master’s Degree (Stanford University, Stanford, 2011).

    Google Scholar 

  37. M. J. Lysek, M. LaMadrid, P. Day, and D. Goodstein, Langmuir 8, 898 (1992).

    Article  Google Scholar 

  38. A. Vishnyakov, E. M. Piotrovskaya, and E. N. Brodskaya, Adsorption 4, 207 (1998).

    Article  Google Scholar 

  39. A. Lotfi, J. Vrabec, and J. Fischer, Mol. Phys. 76, 1319 (1992).

    Article  ADS  Google Scholar 

  40. Y. P. Zhao, Physical Mechanics of Surfaces and Interfaces (Science Press, Beijing, 2012).

    Google Scholar 

  41. Y. Zhao, Theor. Appl. Mech. Lett. 4, 034002 (2014).

    Article  Google Scholar 

  42. J. J. Hamilton, and D. L. Goodstein, Phys. Rev. B 28, 3838 (1983).

    Article  ADS  Google Scholar 

  43. G. J. Bell, and K. C. Rakop, in Proceedings of SPE Annual Technical Conference and Exhibition, New Orleans, USA, 5-8 October 1986 (SPE, New Orleans, 1986).

    Google Scholar 

  44. M. K. Antoniou, E. K. Diamanti, A. Enotiadis, A. Policicchio, K. Dimos, F. Ciuchi, E. Maccallini, D. Gournis, and R. G. Agostino, Microporous Mesoporous Mat. 188, 16 (2014).

    Article  Google Scholar 

  45. M. Golebiowska, M. Roth, L. Firlej, B. Kuchta, and C. Wexler, Carbon 50, 225 (2012).

    Article  Google Scholar 

  46. L. Zhou, M. Li, and Y. Zhou, Sc. China Ser. B-Chem. 43, 143 (2000).

    Article  Google Scholar 

  47. L. Brochard, M. Vandamme, R. J. M. Pellenq, and T. Fen-Chong, Langmuir 28, 2659 (2012).

    Article  Google Scholar 

  48. R. T. Ewy, Acta Geotech. 9, 869 (2014).

    Article  Google Scholar 

  49. Q. Lyu, P. G. Ranjith, X. Long, Y. Kang, and M. Huang, J. Nat. Gas Sci. Eng. 27, 1421 (2015).

    Article  Google Scholar 

  50. G. X. Wang, X. R. Wei, K. Wang, P. Massarotto, and V. Rudolph, Int. J. Coal Geol. 83, 46 (2010).

    Article  Google Scholar 

  51. Z. Weishauptova, J. Medek, and L. Kovar, Fuel 83, 1759 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FengChao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wang, F., Liu, H. et al. Molecular mechanism of adsorption/desorption hysteresis: dynamics of shale gas in nanopores. Sci. China Phys. Mech. Astron. 60, 014611 (2017). https://doi.org/10.1007/s11433-016-0335-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-016-0335-5

Keywords

Navigation