Skip to main content
Log in

Leaky modes and the first arrivals in cased boreholes with poorly bonded conditions

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The generation mechanism of the first arrivals in the cased boreholes for the poorly bonded conditions is investigated. Based on the analyses of the Riemann surface structure of the characteristic function, the dispersion features, excitation spectra and contributions of modes excited in the cased boreholes with different cementing types are studied. The phase velocity dispersion studies of leaky modes show that high-order modes form “plateau” regions with one approximate velocity denoted by v separated by their cutoff frequencies, in which the phase velocity changes little with a considerable frequency range, while the group velocity keeps a relatively constant high value. Usually, the operation frequency range of a specific cementing evaluation acoustic logging tool is covered by such a “plateau” region. Mode excitation and contribution analyses show that the first arrivals in the cased boreholes for the poorly bonded conditions are the contributions from leaky modes, where the traveling velocity of the first arrivals processed by slowness time coherence (STC) method is equal to the approximated velocity v. Analyses on generation of leaky modes in the cased boreholes supplement the understanding of the generation mechanism of the first arrivals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. M. Tang, and A. Cheng, Quantitative Borehole Acoustic Methods (Elsevier, Amsterdam, 2004), pp. 1–50.

    Google Scholar 

  2. H. L. Zhang, X. M. Wang, and B. X. Zhang, Acoustic Field and Wave in Borehole (in Chinese), (Sciences Press, Beijing, 2004), pp. 22–93.

    Google Scholar 

  3. K. M. Tubman, C. H. Cheng, S. P. Cole, and M. N. Toksöz, Geophysics 51, 902 (1986).

    Article  ADS  Google Scholar 

  4. W. X. Hu, and M. L. Qian, Acta Acust. 27, 223 (2002).

    Google Scholar 

  5. H. B. Zhang, D. Y. Xie, Z. P. Shang, X. B. Yang, C. D. Fu, and H. J. Wang, in 2010 3rd International Congress on Image and Signal Processing, Yantai, China, 16-18 October 2010, edited by Z. H. Tan, Y. Wan, T. Xiang and Y. B. Song (Institute of Electrical and Electronics Engineers, Piscataway, 2010), pp. 3881–3885.

  6. A. L. Kurkjian, Geophysics 50, 852 (1985).

    Article  ADS  Google Scholar 

  7. X. He, and H. S. Hu, Sci. China-Phys. Mech. Astron. 53, 1419 (2010).

    Article  ADS  Google Scholar 

  8. H. L. Zhang, X. M. Wang, and C. F. Ying, Sci. China-Math. 39, 289 (1996).

    MATH  MathSciNet  Google Scholar 

  9. X. M. Zhang, H. L. Zhang, and X. M. Wang, Sci. China-Phys. Mech. Astron. 52, 822 (2009).

    Article  ADS  Google Scholar 

  10. X. M. Zhang, H. L. Zhang, and X. M. Wang, Sci. China-Phys. Mech. Astron. 52, 676 (2009).

    Article  ADS  Google Scholar 

  11. D. P. Schmitt, and M. Bouchon, Geophysics 50, 1756 (1985).

    Article  ADS  Google Scholar 

  12. Y. S. Zhu, Acta Geophys. Sin. 37, 586 (1994).

    Google Scholar 

  13. S. W. Lang, A. L. Kurkjian, J. H. McClellan, C. F. Morris, and T. W. Parks, Geophysics 52, 530 (1987).

    Article  ADS  Google Scholar 

  14. M. Kitazawa, and H. P. Valero, in Processing of pseudo-Rayleigh waves in cased hole. Proceedings of the 10th SEGJ International Symposium, Kyoto, Japan, 20-22 November 2011 (Society of Exploration Geophysicists, Tulsa, 2011), pp. 1–4.

    Google Scholar 

  15. J. Q. Yang, B. K. Sinha, and T. M. Habashy, Geophysics 77, WA197 (2012).

    Article  ADS  Google Scholar 

  16. A. N. Norris, J. Acoust. Soc. Am. 87, 414 (1990).

    Article  ADS  Google Scholar 

  17. D. P. Schmitt, J. Acoust. Soc. Am. 93, 640 (1993).

    Article  ADS  Google Scholar 

  18. B. K. Sinha, E. Simsek, and S. Asvadurov, Geophysics 74, E111 (2009).

    Article  ADS  Google Scholar 

  19. B. W. Tichelaar, and K. W. van Luik, Geophysics 60, 1627 (1996).

    Article  Google Scholar 

  20. F. L. Paillet, and C. H. Cheng, Geophysics 51, 1438 (1986).

    Article  ADS  Google Scholar 

  21. D. P. Schmitt, J. Acoust. Soc. Am. 84, 2215 (1988).

    Article  ADS  Google Scholar 

  22. X. M. Wang, and K. Dodds, Explor. Geophys. 33, 146 (2002).

    Article  Google Scholar 

  23. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 2007), pp. 355–362.

    Google Scholar 

  24. B. K. Sinha, T. J. S. Plona, P. S. Kostek, and S. K. Chang, J. Acoust. Soc. Am. 92, 1132 (1992).

    Article  ADS  Google Scholar 

  25. M. Redwood, and J. Lamb, Proc. Phys. Soc. Lond. B 70, 136 (1957).

    Article  ADS  MATH  Google Scholar 

  26. J. Wang, D. H. Chen, H. L. Zhang, X. M. Zhang, X. He, and X. M. Wang, Appl. Geophys. 9, 108 (2012).

    Article  ADS  Google Scholar 

  27. H. B. Zhang, B. H. Huang, H. G. Tao, Z. P. Shang, J. Ma, and K. X. Wang, J. Hohai. Univ. (Nat. Sci.) 34, 552 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiuMei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, X. & Zhang, H. Leaky modes and the first arrivals in cased boreholes with poorly bonded conditions. Sci. China Phys. Mech. Astron. 59, 624301 (2016). https://doi.org/10.1007/s11433-015-5756-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5756-6

Keywords

Navigation