Skip to main content
Log in

A numerical investigation of the acoustic mode waves in a deviated borehole penetrating a transversely isotropic formation

  • Article
  • Acoustics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A 2.5-dimensional method in frequency wave-number domain is developed to investigate the mode waves in a deviated borehole penetrating a transversely isotropic formation. The phase velocity dispersion characteristics of the fast and slow flexural mode waves excited by a dipole source are computed accurately at various deviation angles for both hard and soft formations. The sensitivities of the flexural mode waves to all elastic constants in a transversely isotropic formation are calculated. Numerical results show that, for a soft formation, the fast flexural mode wave is dominated by c 66 at high deviation angles and low frequencies, while the slow flexural mode wave is dominated by c 44 at the same conditions. Waveforms in time domain are also presented to support the conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsang L, Rader D. Numerical evaluation of the transient acoustic waveform due to a point source in a fluid-filled borehole. Geophysics, 1979, 44: 1706–1720

    Article  ADS  Google Scholar 

  2. Kurkjian A L. Numerical computation of individual far-field arrivals excited by an acoustic source in a borehole. Geophysics, 1985, 50: 852–866

    Article  ADS  Google Scholar 

  3. Sinha B K, Norris A N, Chang S K. Borehole flexural modes in anisotropic formations. Geophysics, 1994, 59: 1037–1052

    Article  ADS  Google Scholar 

  4. Chi S H, Tang X M. Stoneley-wave speed modeling in general anisotropic formations. Geophysics, 2006, 71: F67–F77

    Article  ADS  Google Scholar 

  5. Berryman J G. Long-wave elastic anisotropy in transversely isotropic media. Geophysics, 1979, 44: 896–917

    Article  ADS  Google Scholar 

  6. Chan A K, Tsang L. Propagation of acoustic waves in a fluid-filled borehole surrounded by a concentrically layered transversely isotropic formation. J Acoust Soc Am, 1983, 74: 1605–1616

    Article  ADS  Google Scholar 

  7. White J E, Tongtaow C. Cylindrical waves in transversely isotropic media. J Acoust Soc Am, 1981, 70: 1147–1155

    Article  ADS  Google Scholar 

  8. Schmitt D P. Acoustic multipole logging in transversely isotropic poroelastic formations. J Acoust Soc Am, 1989, 86: 2397–2421

    Article  ADS  Google Scholar 

  9. Zhang B X, Dong H F, Wang K X. Multipole sources in a fluid-filled borehole surrounded by a transversely isotropic elastic solid. J Acoust Soc Am, 1994, 96: 2546–2555

    Article  ADS  Google Scholar 

  10. Ellefsen K J. Elastic Wave Propagation Along A Borehole in An Anisotropic Medium. Dissertation for the Doctoral Degree. Massachusetts: Massachusetts Institute of Technology, 1990. 228–231

    Google Scholar 

  11. Leslie H D, Randall C J. Multipole sources in boreholes penetrating anisotropic formations: Numerical and experimental results. J Acoust Soc Am, 1992, 91: 12–27

    Article  ADS  Google Scholar 

  12. Wang X M, Hornby B, Dodds K. Dipole sonic response in deviated boreholes penetrating an anisotropic formation. In: SEG Annual Meeting. Salt Lake City: Society of Exploration Geophysicists, 2002. 1–4

    Google Scholar 

  13. Sinha B K, Şimşek E, Liu Q H. Elastic-wave propagation in deviated wells in anisotropic formations. Geophysics, 2006, 71: D191–D202

    Article  ADS  Google Scholar 

  14. Lin W J, Wang X M, Zhang H L. Acoustic wave propagation in a borehole penetrating an inclined layered formation (in Chinese). Chin J Geophys, 2006, 49: 234–246

    Article  Google Scholar 

  15. He X, Hu H S, Guan W. Fast and slow flexural waves in a deviated borehole in homogeneous and layered anisotropic formations. Geophys J Int, 2010, 181: 417–426

    Article  ADS  Google Scholar 

  16. Yan S G, Song R L, Lv W G, et al. Numerical simulation of acoustic fields excited by cross-dipole source in deviated wells in transversely isotropic formation (in Chinese). Chin J Geophys, 2011, 54: 2412–2418

    MATH  Google Scholar 

  17. Wang R J, Qiao W X, Jv X H, et al. Acoustic multipole logging in deviated wells penetrating transversely isotropic formations: A numerical study. In: SEG Annual Meeting. Houston: Society of Exploration Geophysicists, 2013. 1–4

    Google Scholar 

  18. Kimball C V, Marzetta T L. Semblance processing of borehole acoustic array data. Geophysics, 1984, 49: 274–281

    Article  ADS  Google Scholar 

  19. Ekstrom M P. Dispersion estimation from borehole acoustic arrays using a modified matrix pencil algorithm. In: Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers. Pacific Groov: IEEE, 1995. 449–453

    Google Scholar 

  20. Ellefsen K J, Cheng C H, Toksöz M N. Applications of perturbation theory to acoustic logging. J Geophys Res, 1991, 96: 537–549

    Article  ADS  Google Scholar 

  21. Norris A N, Sinha B K. Weak elastic anisotropy and the tube wave. Geophysics, 1993, 58: 1091–1098

    Article  ADS  Google Scholar 

  22. Zhang B X, Wang K X. Theoretical study of perturbation method for acoustic multipole logging in anisotropic formation. J Acoust Soc Am, 1996, 99: 2674–2685

    Article  ADS  Google Scholar 

  23. Zhu Z Y, Chi S H, Toksöz M N. Sonic logging in deviated boreholes penetrating an anisotropic formation: Laboratory study. Geophysics, 2007, 72: E125–E134

    Article  ADS  Google Scholar 

  24. Wang R J, Qiao W X, Jv X D, et al. Experimental study of the acoustic field in the borehole surrounded by HTI formations excited by dipole sources with different orientations (in Chinese). Chin J Geophys, 2013, 56: 707–717

    Google Scholar 

  25. Mace B R, Duhamel D, Brennan M J, et al. Finite element prediction of wave motion in structural waveguides. J Acoust Soc Am, 2005, 117: 2835–2843

    Article  ADS  Google Scholar 

  26. Komatitsch D, Martin R. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics, 2007, 72: SM155–SM167

    Article  ADS  Google Scholar 

  27. Li Y F, Matar O B. Convolutional perfectly matched layer for elastic second-order wave equation. J Acoust Soc Am, 2010, 127: 1318–1327

    Article  ADS  Google Scholar 

  28. Liu L, Lin W J, Zhang H L, et al. Simulation of 2.5-dimensional borehole acoustic waves with convolutional perfectly matched layer. In: The Proceedings of Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA). Changsha: IEEE, 2013. 1–4

    Google Scholar 

  29. Ellefsen K J, Cheng C H, Toksöz M N. Effects of anisotropy upon the normal modes in a borehole. J Acoust Soc Am, 1991, 89: 2597–2616

    Article  ADS  Google Scholar 

  30. Auld B A, Sun C P. Acoustic Fields and Waves in Solids (in Chinese). Beijing: Science Press, 1982. 70–82

    Google Scholar 

  31. Thomsen L. Weak elastic anisotropy. Geophysics, 1986, 51: 1954–1966

    Article  ADS  MATH  Google Scholar 

  32. Tang X M, Cheng C H, Zhao X M. Quantitative Borehole Acoustic Methods (in Chinese). Beijing: Petroleum Industry Press, 2004. 48–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiJun Lin.

Additional information

Contributed by ZHANG HaiLan (Associate Editor)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Lin, W., Zhang, H. et al. A numerical investigation of the acoustic mode waves in a deviated borehole penetrating a transversely isotropic formation. Sci. China Phys. Mech. Astron. 58, 84301 (2015). https://doi.org/10.1007/s11433-015-5678-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5678-3

Keywords

Navigation