Skip to main content
Log in

Large deflection of clamped circular plate and accuracy of its approximate analytical solutions

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A different set of governing equations on the large deflection of plates are derived by the principle of virtual work (PVW), which also leads to a different set of boundary conditions. Boundary conditions play an important role in determining the computation accuracy of the large deflection of plates. Our boundary conditions are shown to be more appropriate by analyzing their difference with the previous ones. The accuracy of approximate analytical solutions is important to the bulge/blister tests and the application of various sensors with the plate structure. Different approximate analytical solutions are presented and their accuracies are evaluated by comparing them with the numerical results. The error sources are also analyzed. A new approximate analytical solution is proposed and shown to have a better approximation. The approximate analytical solution offers a much simpler and more direct framework to study the plate-membrane transition behavior of deflection as compared with the previous approaches of complex numerical integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Small, and W. D. Nix, J. Mater. Res. 7, 1553 (1992).

    Article  ADS  Google Scholar 

  2. M. Small, B. J. Daniels, B. M. Clemens, and W. D. Nix, J. Mater. Res. 9, 25 (1994).

    Article  ADS  Google Scholar 

  3. J. J. Vlassak, and W. D. Nix, J. Mater. Res. 7, 3242 (1992).

    Article  ADS  Google Scholar 

  4. Y. Xiang, X. Chen, and J. J. Vlassak, J. Mater. Res. 20, 2360 (2005).

    Article  ADS  Google Scholar 

  5. P. Lin, The In-situ Measurement of Mechanical Properties of Multi Layer Coatings, Dissertation for the Doctoral Degree (MIT, Boston, 1990).

    Google Scholar 

  6. T. Y. Zhang, Y. Su, J. Qian, M. H. Zhao, and L. Q. Chen, Acta Mater. 48, 2843 (2000)

    Article  Google Scholar 

  7. V. Ziebart, O. Paul, U. Münch, J. Schwizer, and H. Baltes, J. Microelectromech. Syst. 7, 320 (1998).

    Article  Google Scholar 

  8. J. A. Voorthuyzen, and P. Bergveld, Sens. Actuators 6, 201 (1984).

    Article  Google Scholar 

  9. Z. Xiao, O. Engström, and N. Vidovic, Sens. Actuators A 58, 99 (1997).

    Article  Google Scholar 

  10. M. K. Tripp, C. Stampfer, D. C. Miller, T. Helbling, C. F. Herrmann, C. Hierold, K. Gall, S. M. George, and V. M. Bright, Sens. Actuators A 130-131, 419 (2006).

    Article  Google Scholar 

  11. J. S. Hsu, L. P. Chao, J. H. Jhong, T. F. Chen, and W. C. Tsai, Opt. Lasers Engr. 48, 354 (2010).

    Article  Google Scholar 

  12. T. Süss, P. Braeuninger-Weimer, and C. Hierold, Sens. Actuators A 212, 159 (2014).

    Article  Google Scholar 

  13. J. G. Williams, Int. J. Fracture 87, 265 (1997).

    Article  Google Scholar 

  14. K. T.Wan, S. Guo, and D. A. Dillard, Thin Solid Films 425, 150 (2003).

    Article  ADS  Google Scholar 

  15. K. T. Wan, J. Appl. Mech. 69, 110 (2002).

    Article  ADS  MATH  Google Scholar 

  16. K. T. Wan, and Y. W. Mai, Acta Metall. Mater. 43, 4109 (1995).

    Article  Google Scholar 

  17. S. P. Koenig, N. G. Boddeti, M. L. Dunn, and J. S. Bunch, Nat. Nanotech. 6, 543 (2011).

    Article  ADS  Google Scholar 

  18. Y. Zhang, J. Mater. Sci. 43, 88 (2008).

    Article  ADS  MATH  Google Scholar 

  19. Y. Zhang, J. Phys. D-Appl. Phys. 43, 1188 (2007).

    Google Scholar 

  20. Y. Zhang, J. Micromech. Microengr. 17, 753 (2007).

    Article  ADS  Google Scholar 

  21. U. Komaragiri, M. R. Begley, and J. G. Simmonds, J. Appl. Mech. 72, 203 (2005).

    Article  ADS  MATH  Google Scholar 

  22. M. R. Begley, and T. J. Mackin, J. Mech. Phys. Solids 52, 2005 (2004).

    Article  ADS  Google Scholar 

  23. B. F. Ju, Y. Ju, M. Saka, K. K. Liu, and K. T. Wan, Int. J. Mech. Sci. 47, 319 (2005).

    Article  Google Scholar 

  24. S. P. Timoshenko, and S. Woinowsky-Krieger, Theory of Plates and Shells (2nd ed) (McGraw-Hill, New York, 1959).

    Google Scholar 

  25. P. Tong, and W. Huang, J. Appl. Mech. 69, 785 (2002).

    Article  ADS  MATH  Google Scholar 

  26. Y. H. Su, K. S. Chen, D. C. Roberts, and S. M. Spearing, J. Micromech. Microengr. 11, 645 (2001).

    Article  ADS  Google Scholar 

  27. Y. Zhang, and K. D. Murphy, Acta. Mech. Sin. 28, 1374 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  28. M. H. Zhao, F. Yang, and T. Y. Zhang, Mech. Mater. 39, 881 (2007).

    Article  Google Scholar 

  29. H. X. Mei, C. M. Landis, and R. Huang, Mech. Mater. 43, 627 (2011).

    Article  Google Scholar 

  30. K. Yue, W. Gao, R. Huang, and K. M. Liechti, J. Appl. Phys. 112, 083512 (2012).

    Article  ADS  Google Scholar 

  31. T. Georgiou, L. Britnell, P. Blake, R. V. Gorbachev, A. Gholinia, A. K. Geim, C. Casiraghi, and K. S. Novoselov, Appl. Phys. Lett. 99, 093103 (2011).

    Article  ADS  Google Scholar 

  32. A. Boudaoud, P. Patricio, Y. Couder, and M. B. Amar, Nature 407, 718 (2000).

    Article  ADS  Google Scholar 

  33. A. Nádai, Die Elastischen Platten (Springer, Berlin, 1925).

    Book  MATH  Google Scholar 

  34. S. Way, Trans. ASME 56, 627 (1934).

    Google Scholar 

  35. K. Federhofer, Forschungsarb 7, 148 (1936).

    Google Scholar 

  36. A. McPherson, W. Ramberg, and S. Levy, Normal Pressure Tests of Circular Plates with Clamped Edges, NACA Report No. 744 (1942).

    Google Scholar 

  37. P. Lin, and S. D. Senturia, Mater. Res. Soc. Symp. Proc. 188, 41 (1990).

    Article  Google Scholar 

  38. W. K. Schomburg, Introduction to Microsystem Design (Springer, Berlin Heidelberg, 2011).

    Book  Google Scholar 

  39. H. Hencky, Z. Math. Phys. 63, 311 (1915).

    Google Scholar 

  40. A. N. Gent, and L. H. Lewandowski, J. Appl. Polym. Sci. 33, 1567 (1987).

    Article  Google Scholar 

  41. J. W. Beams, Mechanical properties of thin films of gold and silver, in Structures and Properties of Thin Films, edited by C. A. Neugebauer, J. B. Newkirk, D. A. Verilyea (JohnWiley and Sons, New York, 1959), pp. 183–192.

    Google Scholar 

  42. M. G. Allen, and S. D. Senturia, J. Adhes. 25, 303 (1988).

    Article  Google Scholar 

  43. J. Sizemore, R. J. Hohlfelder, J. J. Vlassak, and W. D. Nix, Mater. Res. Soc. Symp. Proc. 383, 197 (1995).

    Article  Google Scholar 

  44. M. Sheplak, and J. Dugundji, J. Appl. Mech. 65, 107 (1998).

    Article  ADS  Google Scholar 

  45. X. T. He, Q. Chen, J. Y. Sun, and Z. L. Zheng, Int. J. Mech. Sci. 62, 103 (2012).

    Article  Google Scholar 

  46. W. Z. Chien, Chin. J. Phys. 7, 102 (1947).

    MathSciNet  Google Scholar 

  47. W. Z. Chien, and K. Y. Yeh, Chin. J. Phys. 10, 209 (1954).

    Google Scholar 

  48. G. A. Korn, and T. M. Korn, Mathematical Handbook for Scientist and Engineers (2nd ed) (McGraw-Hill Book Company, New York, 1968).

    Google Scholar 

  49. X. J. Zheng, and Y. H. Zhou, Acta Mech. Sin. 6, 69 (1990).

    Article  MATH  Google Scholar 

  50. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran (2nd ed) (Cambridge University Press, Cambridge, 1992).

    MATH  Google Scholar 

  51. K. O. Friderichs, Proc. Symposia. Appl. Math. 1, 188 (1949).

    Article  Google Scholar 

  52. Y. Zhang, Y. Liu, and K. D. Murphy, Acta. Mech. Sin. 28, 190 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. E. Reissner, Proc. Symposia. Appl. Math. 1, 213 (1949).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y. Large deflection of clamped circular plate and accuracy of its approximate analytical solutions. Sci. China Phys. Mech. Astron. 59, 624602 (2016). https://doi.org/10.1007/s11433-015-5751-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5751-y

Keywords

Navigation