Skip to main content
Log in

Experimental validation of dynamic polarization compensation in ground-satellite quantum key distribution

  • Article
  • Special Topic: Quantum Information
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Ground-satellite quantum key distribution (QKD) is a feasible way to implement global-scale quantum communication. Herein we propose an approach to dynamically compensate the polarization of the photons when passing through the optical telescope used in ground-satellite QKD. Our results experimentally demonstrate that the fidelity of any polarization state after dynamic compensation can be achieved by more than 99.5%, which fulfills the requirements of ground-satellite QKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. In: Processing of the IEEE International Conference on Computers, Systems, and Signal Processing. Bangalore: IEEE, 1984. 175–179

    Google Scholar 

  2. Stucki D, Gisin N, Guinnard O, et al. Quantum key distribution over 67 km with a plug & play system. New J Phys, 2002, 4: 41.1–41.8

    Article  Google Scholar 

  3. Peng C Z, Yang T, Bao X H, et al. Experimental free-space distribution of entangled photon pairs over 13 km: Towards satellite-based global quantum communication. Phys Rev Lett, 2005, 94: 150501

    Article  ADS  Google Scholar 

  4. Stucki D, Walenta N, Vannel F, et al. High rate, long-distance quantum key distribution over 250 km of ultra low loss fibers. New J Phys, 2009, 11: 075003

    Article  Google Scholar 

  5. Liu Y, Chen T Y, Wang J, et al. Decoy-state quantum key distribution with polarized photons over 200 km. Opt Express, 2010, 18: 8587–8594

    Article  ADS  Google Scholar 

  6. Dixon A R, Yuan Z L, Dynes J F, et al. Continuous operation of high bit rate quantum key distribution. Appl Phys Lett, 2010, 96: 161102

    Article  ADS  Google Scholar 

  7. Yin J, Ren J G, Lu H, et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature, 2012, 488: 185–188

    Article  ADS  Google Scholar 

  8. Cao Y, Liang H, Yin J, et al. Entanglement-based quantum key distribution with biased basis choice via free space. Opt Express, 2013, 21: 27260–27268

    Article  ADS  Google Scholar 

  9. Nordholt J E, Hughes R J, Morgan G L, et al. Present and future free-space quantum key distribution. In: Mecherle G S, ed. Proceedings of SPIE: Free-space Laser Communication Technologies XIV. San Jose: SPIE, 2002. 116–126

    Chapter  Google Scholar 

  10. Aspelmeyer M, Jennewein T, Pfennigbauer M, et al. Long-distance quantum communication with entangled photons using satellites. IEEE J Sel Top Quantum Electron, 2003, 9: 1541–1551

    Article  Google Scholar 

  11. Villoresi P, Tamburini F, Aspelmeyer M, et al. Space-to-ground quantum communication using an optical ground station: A feasibility study. In: Meyers R E, Shih Y, eds. Proceedings of SPIE: Quantum Communications and Quantum Imagin II. Denver: SPIE, 2004. 113–120

    Chapter  Google Scholar 

  12. Rarity J G, Tapster P R, Gorman P M, et al. Ground to satellite secure key exchange using quantum cryptography. New J Phys, 2002, 4:82. 1–82. 21

    Article  Google Scholar 

  13. Miao E L, Han Z F, Gong S S, et al. Background noise of satel lite-to-ground quantum key distribution. New J Phys, 2005, 7: 215

    Article  Google Scholar 

  14. Pfennigbauer M, Aspelmeyer M, Leeb W R, et al. Satellite-based quantum communication terminal employing state-of-the-art technology. J Opt Commun Network, 2005, 4: 549–560

    Article  Google Scholar 

  15. Toyoshima M, Takayama Y, Kunimori H, et al. Development of the polarization tracking scheme for free-space quantum cryptography. In: Gilbreath G C, Wasiczko L M, eds. Proceedings of SPIE: Atmospheric Propagation V. Koganei: SPIE, 2008. 6951

    Google Scholar 

  16. Villoresi P, Jennewein T, Tamburini F M, et al. Experimental verification of the feasibility of a quantum channel between space and Earth. New J Phys, 2008, 10: 033038

    Article  Google Scholar 

  17. Bonato C, Villoresi P, Pernechele C. Influence of all-reflective optical systems in the transmission of polarization-encoded qubits. J Opt A-Pure Appl Opt, 2007, 9: 899–906

    Article  ADS  Google Scholar 

  18. Born M, Wolf E. Principles of Optics. 7th ed. New York: Cambridge University Press, 2001. 32

    Google Scholar 

  19. Englert B G, Kurtsiefer C, Weinfurter H. Universal unitary gate for single-photon two-qubit states. Phys Rev A, 2001, 63: 032303

    Article  ADS  Google Scholar 

  20. Yan J X, Wei G H. Matrix Optics (in chinese). Beijing: Beijing Weapons Industry Press, 1995. 188–189

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiYue Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Guo, H., Ren, J. et al. Experimental validation of dynamic polarization compensation in ground-satellite quantum key distribution. Sci. China Phys. Mech. Astron. 57, 1233–1237 (2014). https://doi.org/10.1007/s11433-014-5476-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5476-3

Keywords

Navigation