Skip to main content
Log in

PIV measurements of turbulent jets issuing from triangular and circular orifice plates

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The present study experimentally investigated the near-field flow mixing characteristics of two turbulent jets issuing from equilateral triangular and circular orifice plates into effectively unbounded surroundings, respectively. Planar particle image velocimetry (PIV) was applied to measure the velocity field at the same Reynolds number of Re=50,000, where Re = U e D e/ν with U e being the exit bulk velocity and ν the kinematic viscosity of fluid, D e the equivalent diameters. The instantaneous velocity, mean velocity, Reynolds stresses were obtained. From the mean velocity field, the centreline velocity decay rate and half-velocity width were derived. Comparing the mixing characteristics of the two jets, it is found that the triangular jet has a faster mixing rate than the circular counterpart. The triangular jet entrainments with the ambient fluid at a higher rate in the near field. This is evidenced by a shorter unmixed core, faster Reynolds stress and centreline turbulence intensity growth. The primary coherent structures in the near field are found to break down more rapidly in the triangular jet as compared to the circular jet. Over the entire measurement region, the triangular jet maintained a higher rate of decay and spread. Moreover, all components of Reynolds stress of the triangular jet appear to reach their peaks earlier, and then decay more rapidly than those of the circular jet. In addition, the axis-switching phenomenon is observed in the triangular jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gutmark E, Grinstein F. Flow control with noncircular jets. Annu Rev Fluid Mech, 1999, 31(1): 239–272

    Article  ADS  Google Scholar 

  2. Zaman K B M Q. Axis switching and spreading of an asymmetric jet: The role of coherent structure dynamics. J Fluid Mech Digital Archive, 1996, 316(1): 1–27

    Article  ADS  Google Scholar 

  3. Gutmark E, Schadow K, Parr T, et al. Noncircular jets in combustion systems. Expt Fluids, 1989, 7(4): 248–258

    Article  ADS  Google Scholar 

  4. Koshigoe S, Gutmark E, SCHADOW K, et al. Initial development of noncircular jets leading to axis switching. AIAA J, 1989, 27: 411–419

    Article  ADS  Google Scholar 

  5. Grinstein F, Gutmark E, Parr T. Near field dynamics of subsonic free square jets: A computational and experimental study. Phys Fluids, 1995, 7(6): 1483–1497

    Article  ADS  Google Scholar 

  6. Miller R, Madnia C, Givi P. Numerical simulation of non-circular jets. Compt Fluids, 1995, 24(1): 1–25

    Article  MATH  Google Scholar 

  7. Quinn W. Mean flow and turbulence measurements in a triangular turbulent free jet. Int J Heat Fluid Fl, 1990, 11(3): 220–224

    Article  MathSciNet  Google Scholar 

  8. Quinn W. Measurements in the near flow field of an isosceles triangular turbulent free jet. Expt Fluids, 2005, 39(1): 111–126

    Article  MathSciNet  ADS  Google Scholar 

  9. Mi J, Nathan G. Statistical properties of turbulent free jets issuing from nine differently-shaped nozzles. Flow Turbul Combust, 2010, 84(4): 583–606

    Article  MATH  Google Scholar 

  10. Iyogun C, Birouk M. Effect of sudden expansion on entrainment and spreading rates of a jet issuing from asymmetric nozzles. Flow Turbul Combust, 2009, 82(3): 287–315

    Article  MATH  Google Scholar 

  11. Mi J, Kalt P, Nathan G J, et al. PIV measurements of a turbulent jet issuing from round sharp-edged plate. Expt Fluids, 2007, 42(4): 625–637

    Article  ADS  Google Scholar 

  12. Bruun H H. Hot-wire Anemometry, Principles and Data Analysis. Oxford: Oxford University Press, 1994

    Google Scholar 

  13. Mi J, Xu M, Du C. Digital filter for hot-wire measurements of small-scale turbulence properties. Meas Sci Technol, 2011, 22: 125401

    Article  ADS  Google Scholar 

  14. Xu M, Du C, Mi J. Centerline statistics of the small-scale trubulence of a circular jet and their dependence on high frequency noise. Acta Phy Sin, 2011, 60(3): 345353

    Google Scholar 

  15. He L, Yi S H, Zhao Y X, et al. Experimental study of a supersonic turbulent boundary layer using PIV. Sci China-Phys Mech Astron, 2012, 54(9): 1702–1709

    ADS  Google Scholar 

  16. Yang S Q, Jiang N. Tomographic TR-PIV measurement of coherent structure spatial topology utilizing an improved quadrant splitting method. Sci China-Phys Mech Astron, 2012, 55(10): 1863–1872

    Article  MathSciNet  ADS  Google Scholar 

  17. Pan C, Wang J J, Zhang C. Identification of Lagrangian coherent structures in the turbulent boundary layer. Sci China Ser G-Phys Mech Astron, 2009, 52(2): 248–257

    Article  MathSciNet  ADS  Google Scholar 

  18. Tang Z Q, Jiang N. Dynamic mode decomposition of hairpin vortices generated by a hemisphere protuberance. Sci China-Phys Mech Astron, 2012, 55(1): 118–124

    Article  MathSciNet  ADS  Google Scholar 

  19. Liu Z F, Wang L Z, Fu S. Study of flow induced by sine wave and saw tooth plasma actuators. Sci China-Phys Mech Astron, 2012, 54(11): 2033–2039

    ADS  Google Scholar 

  20. Mi J, Kalt P, Nathan G. On Turbulent jets issuing from notched-rectangular and circular orifice plates. Flow Turbul Combust, 2010, 84(4): 565–582

    Article  MATH  Google Scholar 

  21. Xu M, Zhang J, Mi J, et al. Mean and fluctuating velocity fields of a diamond turbulent jet. Chin Phys B, 2013, 22(3): 034701

    Article  ADS  Google Scholar 

  22. Hussain A, Clark A. On the coherent structure of the axisymmetric mixing layer: A flow-visualization study. J Fluid Mech, 1981, 104: 263–294

    Article  ADS  Google Scholar 

  23. Schadow K, Gutmark E, Parr D, et al. Selective control of flow coherence in triangular jets. Expt Fluids, 1988, 6(2): 129–135

    ADS  Google Scholar 

  24. Ho C, Gutmark E. Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet. J Fluid Mech, 1987, 179: 383–405

    Article  ADS  Google Scholar 

  25. Hussain F, Husain H. Elliptic jets, Part 1. Characteristics of unexcited and excited jets. J Fluid Mech, 1989, 208: 257–320

    Article  ADS  Google Scholar 

  26. Husain H, Hussain A. Controlled excitation of elliptic jets. Phys Fluids, 1983, 26: 2763–2765

    Article  ADS  Google Scholar 

  27. Du C, Xu M, Mi J. Effect of exit Reynolds number on a turbulent round jet. Acta Phy Sin, 2010, 59(9): 6323–6330

    Google Scholar 

  28. Deo R C, Mi J, Nathan G J. The influence of Reynolds number on a plane jet. Phys Fluids, 2008, 20(7): 075108

    Article  ADS  Google Scholar 

  29. Xu M, Pollard A, Mi J, et al. Effects of Reynolds number on some properties of a turbulent jet from a long square pipe. Phys Fluids, 2013, 25: 035102

    Article  ADS  Google Scholar 

  30. Widnall S E. The structure and dynamics of vortex filaments. Annu Rev Fluid Mech, 1975, 7(1): 141–165

    Article  ADS  Google Scholar 

  31. Hussein H, Capp S, George W. Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J Fluid Mech, 1994, 258: 31–75

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MinYi Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, M., Zhang, J., Mi, J. et al. PIV measurements of turbulent jets issuing from triangular and circular orifice plates. Sci. China Phys. Mech. Astron. 56, 1176–1186 (2013). https://doi.org/10.1007/s11433-013-5099-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5099-0

Keywords

Navigation