Skip to main content
Log in

Enhanced parametric amplification in slow-light photonic crystal waveguides

  • Articles/Optics
  • Published:
Chinese Science Bulletin

Abstract

We demonstrate both theoretically and numerically that slow light can enhance the parametric process of silicon in photonic crystal line-defect waveguides. Specifically, to get the desired gain, the pump power for a given gain medium length or the gain medium length for given pump power can be reduced by (c/v g n)2 when slow light waveguides are used, where n is the material index of conventional waveguide, v g is the group velocity of the slow light waveguide and c is the light velocity in vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joannopoulos J D, Meade R D, Win J N. Photonic Crystals: Molding the Flow of Light. Princeton: Princeton University Press, 1995

    Google Scholar 

  2. McMillan J F, Yang X, Panoiu N C, et al. Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides. Opt Lett, 2006, 31: 1235–1237

    Article  Google Scholar 

  3. Wang Z, Fan S. Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines. Phys Rev E, 2003, 68: 066616

    Google Scholar 

  4. Karalis A, Johnson S G, Joannopoulos J D. Discrete-mode cancellation mechanism for high-Q integrated optical cavities with small modal volume. Opt Lett, 2004, 29: 2309–2311

    Article  Google Scholar 

  5. Vlasov Y A, O’Boyle M, Hamann H F, et al. Active control of slow light on a chip with photonic crystal waveguides. Nature, 2005, 438: 65–69

    Article  Google Scholar 

  6. Fan S, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs. Phys Rev B, 2002, 65: 235112

    Google Scholar 

  7. Baba T, Mori D. Slow light engineering in photonic crystals. J Phys D: Appl Phys, 2007, 40: 2659–2665

    Article  Google Scholar 

  8. Frandsen L H, Lavrinenko A V, Fage-Pedersen J, et al. Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Opt Express, 2006, 14: 9444–9450

    Article  Google Scholar 

  9. Yang X, Wong C W. Design of photonic band gap nanocavities for stimulated Raman amplification and lasing in monolithic silicon. Opt Express, 2005, 13: 4723–4730

    Article  Google Scholar 

  10. Ibanescu M, Johnson S G, Roundy D, et al. Dynamic nonlinear effect on lasing in a random medium. Phys Rev Lett, 2004, 92: 063903

    Google Scholar 

  11. Notomi M, Yamada K, Shinya A, et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys Rev Lett, 2001, 87: 253902

    Google Scholar 

  12. Gersen H, Karle T J, Engelen R J P, et al. Real-space observation of ultraslow light in photonic crystal waveguides. Phys Rev Lett, 2005, 94: 073903

    Google Scholar 

  13. Sakoda S. Optical Properties of Photonic Crystals. Berlin: Springer, 2001

    Google Scholar 

  14. Sakoda K. Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals. Opt Express, 1999, 4: 167–176

    Article  Google Scholar 

  15. Soljacic M, Johnson S G, Fan S, et al. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J Opt Soc Am B, 2002, 19: 2052–2059

    Article  Google Scholar 

  16. Stolen R H, Bjorkholm J E. Parametric amplification and frequency conversion in optical fibers. IEEE J Quant Electron, 1982, 18: 1062–1072

    Article  Google Scholar 

  17. Agrawal G P. Nonlinear Fiber Optics. Oxford: Academic Press, 1995

    Google Scholar 

  18. Foster M A, Turner A C, Sharping J E, et al. Broad-band optical parametric gain on a silicon photonic chip. Nature, 2006, 441: 960–963

    Article  Google Scholar 

  19. Snyder A W, Love J D. Optical Waveguide Theory. London: Chapman-Hall, 1983

    Google Scholar 

  20. Farjadpour A, Roundy D, Rodriguez A, et al. Improving accuracy by subpixel smoothing in the finite-difference time domain. Opt Lett, 2006, 31: 2972–2974

    Article  Google Scholar 

  21. Chen X, Panoiu N C, Osgood R M. Theory of Raman-mediated pulsed amplification in silicon-wire waveguides. IEEE J Quant Electron, 2006, 42: 160–170

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Jiang.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 60377023, 60672017), New Century Excellent Talents in University (NCET), Shanghai Optical Science and Technology Project (Grant No. 05DZ22009) and Shanghai Pujiang Program

About this article

Cite this article

Liu, Y., Jiang, C. Enhanced parametric amplification in slow-light photonic crystal waveguides. Chin. Sci. Bull. 54, 2221–2224 (2009). https://doi.org/10.1007/s11434-009-0369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0369-y

Keywords

Navigation