Skip to main content
Log in

Nondestructive discrimination of Greenberger-Horne-Zeilinger-basis states via two-qubit parity detection

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We propose new methods to construct universal Greenberger-Horne-Zeilinger (GHZ)-state analyzers without destroying the qubits by using two-qubit parity gates. The idea can be applied to any physical systems where the two-qubit parity gate can be realized. We also investigate the feasibility of nondestructively distinguishing the GHZ-basis states for photonic qubits with such an idea. The nondestructive GHZ-state analyzers can act as generators of GHZ entangled states and are expected to find useful applications for resource-saving quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895–1899

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Gao T, Yan F L, Li Y C. Optimal controlled teleportation via several kinds of three-qubit states. Sci China Ser G-Phys Mech Astron, 2008, 51: 1529–1556

    Article  ADS  Google Scholar 

  3. Wang M Y, Yan F L. Chain teleportation via partially entangled states. Eur Phys J D, 2009, 54: 111–114

    Article  MathSciNet  ADS  Google Scholar 

  4. Yin X F, Liu YM, Zhang Z Y, et al. Perfect teleportation of an arbitrary three-qubit state with the highly entangled six-qubit genuine state. Sci China-Phys Mech Astron, 2010, 53: 2059–2063

    Article  ADS  Google Scholar 

  5. Yin J, Ren J G, Lu H, et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature, 2012, 488: 185–188

    Article  ADS  Google Scholar 

  6. Zukowski M, Zeilinger A, Horne M A, et al. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys Rev Lett, 1993, 71: 4287–4290

    Article  ADS  Google Scholar 

  7. Pan J W, Bouwmeester D, Weinfurter H, et al. Experimental entanglement swapping: Entangling photons that never interacted. Phys Rev Lett, 1998, 80: 3891–3894

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Zhang Z J, Man Z X. Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys Rev A, 2005, 72: 022303

    Article  MathSciNet  ADS  Google Scholar 

  9. Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys Rev Lett, 1992, 69: 2881–2884

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Hao J C, Li C F, Guo G C. Controlled dense coding using the Greenberger-Horne-Zeilinger state. Phys Rev A, 2001, 63: 054301

    Article  ADS  Google Scholar 

  11. Zhang J F, Xie J Y, Wang C, et al. Implementation of a multiple round quantum dense coding using nuclear magnetic resonance. Sci China Ser G-Phys Mech Astron, 2005, 48: 706–715

    Article  ADS  Google Scholar 

  12. Barreiro J T, Wei T C, Kwiat P G. Beating the channel capacity limit for linear photonic superdense coding. Nat Phys, 2008, 4: 282–286

    Article  Google Scholar 

  13. Hillery M, Bužek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    Article  MathSciNet  ADS  Google Scholar 

  14. Wang X W, Xia L X, Wang Z Y, et al. Hierarchical quantuminformation splitting. Opt Commun, 2010, 283: 1196–1199

    Article  ADS  Google Scholar 

  15. Wang X W, Zhang D Y, Tang S Q, et al. Multiparty hierarchical quantum-information splitting. J Phys B-At Mol Opt Phys, 2011, 44: 035505

    ADS  Google Scholar 

  16. Deng F G, Li C Y, Li Y S, et al. Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys Rev A, 2005, 72: 022338

    Article  ADS  Google Scholar 

  17. Zheng S B. Splitting quantum information via W states. Phys Rev A, 2006, 74: 054303

    Article  ADS  Google Scholar 

  18. Zhang Z J, Li Y, Man Z X. Multiparty quantum secret sharing. Phys Rev A, 2005, 71: 044301

    Article  MathSciNet  ADS  Google Scholar 

  19. Murao M, Jonathan D, Plenio M B, et al. Quantum telecloning and multiparticle entanglement. Phys Rev A, 1999, 59: 156–161

    Article  ADS  Google Scholar 

  20. Zheng S B. Simplified scheme for cloning and telecloing quantum states near a given state. Chin Phys Lett, 2003, 20: 325–327

    Article  ADS  Google Scholar 

  21. Zhang W H, Ye L. Scheme to implement general economical phasecovariant telecloning. Phys Lett A, 2006, 353: 130–137

    Article  ADS  Google Scholar 

  22. Wang X W, Yang G J. Hybrid economical telecloning of equatorial qubits and generation of multipartite entanglement. Phys Rev A, 2009, 79: 062315

    Article  ADS  Google Scholar 

  23. Murao M, Vedral V. Remote information concentration using a bound entangled state. Phys Rev Lett, 2001, 86: 352–355

    Article  ADS  Google Scholar 

  24. Yu Y F, Feng J, Zhan M S. Remote information concentration by a Greenberger-Horne-Zeilinger state and by a bound entangled state. Phys Rev A, 2003, 68: 024303

    Article  ADS  Google Scholar 

  25. Wang X W, Zhang D Y, Yang G J, et al. Remote information concentration and multipartite entanglement in multilevel systems. Phys Rev A, 2011, 84: 042310

    Article  ADS  Google Scholar 

  26. Wang X W, Tang S Q, Xie L J, et al. Many-to-one remote information concentration for qudits and multipartite entanglement. Quantum Inf Comp, 2014, 14: 0122–0136

    Google Scholar 

  27. Long G L, Liu X S. Theoretically efficient high-capacity quantum-keydistribution scheme. Phys Rev A, 2002, 65: 032302

    Article  ADS  Google Scholar 

  28. Deng F G, Long G L. Controlled order rearrangement encryption for quantum key distribution. Phys Rev A, 2003, 68: 042315

    Article  ADS  Google Scholar 

  29. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317

    Article  ADS  Google Scholar 

  30. Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305

    Article  ADS  Google Scholar 

  31. Gorbachev V N, Zhiliba A I, Trubilko A I. Teleportation of entangled states. J Opt B-Quantum Semiclass Opt, 2001, 3: S25–S29

    MathSciNet  ADS  Google Scholar 

  32. Bose S, Vedral V, Knight P L. Multiparticle generalization of entanglement swapping. Phys Rev A, 1998, 57: 822–829

    Article  ADS  Google Scholar 

  33. Lee H J, Ahn D, Hwang S W. Dense coding in entangled states. Phys Rev A, 2002, 66: 024304

    Article  MathSciNet  ADS  Google Scholar 

  34. Wang X W, Liu X, Wang Z Y. Dense coding with multi-atom entanglement channel in cavity QED. Chin Phys Lett, 2007, 24: 11–14

    Article  ADS  Google Scholar 

  35. Liu X S, Long G L, Tong D M, et al. General scheme for superdense coding between multiparties. Phys Rev A, 2002, 65: 022304

    Article  ADS  Google Scholar 

  36. Deng F G, Li X H, Li C Y, et al. Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys Rev A, 2005, 72: 044301

    Article  ADS  Google Scholar 

  37. Chen L, She W. Hybrid entanglement swapping of photons: Creating the orbital angular momentum Bell states and Greenberger-Horne-Zeilinger states. Phys Rev A, 2011, 83: 012306

    Article  ADS  Google Scholar 

  38. Lu C Y, Yang T, Pan J W. Experimental Multiparticle Entanglement Swapping for Quantum Networking. Phys Rev Lett, 2009, 103: 020501

    Article  ADS  Google Scholar 

  39. Braunstein S L, Mann A. Measurement of the Bell operator and quantum teleportation. Phys Rev A, 1995, 51: R1727–R1730

    Article  ADS  Google Scholar 

  40. Vaidman L, Yoran N. Methods for reliable teleportation. Phys Rev A, 1999, 59: 116–125

    Article  ADS  Google Scholar 

  41. Lutkenhaus N, Calsamiglia J, Suominen K A. Bell measurements for teleportation. Phys Rev A, 1999, 59: 3295–3300

    Article  MathSciNet  ADS  Google Scholar 

  42. Pan J W, Zeilinger A. Greenberger-Horne-Zeilinger-state analyzer. Phys Rev A, 1998, 57: 2208–2211

    Article  MathSciNet  ADS  Google Scholar 

  43. Kim Y H, Kulik S P, Shih Y. Quantum teleportation of a polarization state with a complete Bell state measurement. Phys Rev Lett, 2001, 86: 1370–1373

    Article  ADS  Google Scholar 

  44. Qian J, Feng X L, Gong S Q. Universal Greenberger-Horne-Zeilingerstate analyzer based on two-photon polarization parity detection. Phys Rev A, 2005, 72: 052308

    Article  ADS  Google Scholar 

  45. Walborn S P, Pádua S, Monken C H. Hyperentanglement-assisted Bellstate analysis. Phys Rev A, 2003, 68: 042313

    Article  MathSciNet  ADS  Google Scholar 

  46. Barbieri M, Vallone G, Mataloni P, et al. Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement. Phys Rev A, 2007, 75: 042317

    Article  ADS  Google Scholar 

  47. Sheng Y B, Deng F G. Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys Rev A, 2010, 81: 032307

    Article  ADS  Google Scholar 

  48. Sheng Y B, Deng F G, Long G L. Complete hyperentangled-Bell-state analysis for quantum communication. Phys Rev A, 2010, 82: 032318

    Article  ADS  Google Scholar 

  49. Xia Y, Chen Q Q, Song J, et al. Efficient hyperentangled Greenberge-Horne-Zeilinger states analysis with cross-Kerr nonlinearity. J Opt Soc Am B, 2012, 29: 1029–1037

    Article  ADS  Google Scholar 

  50. Wang T J, Lu Y, Long G L. Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Phys Rev A, 2012, 86: 042337

    Article  ADS  Google Scholar 

  51. Liu Q, Zhang M. Complete and deterministic analysis for spatialpolarization hyperentangled Greenberger-Horne-Zeilinger states with quantum-dot cavity systems. J Opt Soc Am B, 2013, 30: 2263–2270

    Article  ADS  Google Scholar 

  52. Song S Y, Cao Y, Sheng Y B, et al. Complete Greenberger-Horne-Zeilinger state analyzer using hyperentanglement. Quantum Inf Process 2013, 12: 381–393

    Article  MATH  MathSciNet  ADS  Google Scholar 

  53. Thorne K S, Drever R W P, Caves C M, et al. Quantum Nondemolition Measurements of Harmonic Oscillators. Phys Rev Lett, 1978, 40: 667–671

    Article  ADS  Google Scholar 

  54. Jin J S, Yu C S, Pei P, et al. Quantum nondemolition measurement of the Werner state. Phys Rev A, 2010, 82: 042112

    Article  ADS  Google Scholar 

  55. Tang Y C, Li Y S, Hao L, et al. Quantum-nondemolition determination of an unknown Werner state. Phys Rev A, 2012, 85: 022329

    Article  ADS  Google Scholar 

  56. Barrett S D, Kok P, Nemoto K, et al. Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys Rev A, 2005, 71: 060302(R)

    Article  ADS  Google Scholar 

  57. Guo Q, Bai J, Cheng L Y, et al. Simplified optical quantum-information processing via weak cross-Kerr nonlinearities. Phys Rev A, 2011, 83: 054303

    Article  ADS  Google Scholar 

  58. Li J, Shi B S, Jiang Y K, et al. A non-destructive discrimination scheme on 2n-partite GHZ bases. J Phys B-At Mol Opt Phys, 2000, 33: 3215–3223

    ADS  Google Scholar 

  59. Wang X W, Zhang D Y, Tang S Q, et al. Nondestructive Greenberger-Horne-Zeilinger-state analyzer. Quantum Inf Process, 2013, 12: 1065–1075

    Article  MATH  MathSciNet  ADS  Google Scholar 

  60. Ionicioiu R, Popescu A E, Munro W J, et al. Generalized parity measurements. Phys Rev A, 2008, 78: 052326

    Article  ADS  Google Scholar 

  61. O’Brien J L, Pryde G J, White A G, et al. Demonstration of an alloptical quantum controlled-not gate. Nature, 2003, 426: 264–267

    Article  ADS  Google Scholar 

  62. Long G L, Xiao L. Parallel quantum computing in a single ensemble quantum computer. Phys Rev A, 2004, 69: 052303

    Article  MathSciNet  ADS  Google Scholar 

  63. Feng G R, Xu G F, Long G L. Experimental realization of nonadiabatic holonomic quantum computation. Phys Rev Lett, 2013, 110: 190501

    Article  ADS  Google Scholar 

  64. Wei H R, Deng F G. Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys Rev A, 2013, 87: 022305

    Article  ADS  Google Scholar 

  65. Kok P, Munro WJ, Nemoto K, et al. Linear optical quantum computing with photonic qubits. Rev Mod Phys, 2007, 79: 135–174

    Article  ADS  Google Scholar 

  66. Nemoto K, Munro W J. Nearly deterministic linear optical controlled-NOT gate. Phys Rev Lett, 2004, 93: 250502

    Article  ADS  Google Scholar 

  67. Munro W J, Nemoto K, Spiller T P. Weak nonlinearities: A new route to optical quantum computation. New J Phys, 2005, 7: 137

    Article  Google Scholar 

  68. Barrett S D, Milburn G J. Quantum-information processing via a lossy bus. Phys Rev A, 2006, 74: 060302

    Article  ADS  Google Scholar 

  69. Wang X W, Zhang D Y, Tang S Q, et al. Photonic two-qubit parity gate with tiny cross-Kerr nonlinearity. Phys Rev A, 2012, 85: 052326

    Article  ADS  Google Scholar 

  70. Wang X W, Tang S Q, Xie L J, et al. Nondestructive two-photon parity detector with near unity efficiency. Opt Commun, 2013, 296: 153–157

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XinWen Wang or LeMan Kuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Tang, S. & Kuang, L. Nondestructive discrimination of Greenberger-Horne-Zeilinger-basis states via two-qubit parity detection. Sci. China Phys. Mech. Astron. 57, 1848–1853 (2014). https://doi.org/10.1007/s11433-014-5549-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5549-3

Keywords

Navigation