Skip to main content
Log in

Optical parity gate and a wide range of entangled states generation

  • Article
  • Optics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Generating entangled states efficiently is a hot topic in the area of quantum information science. With the approach presented in this paper, a general parity gate could be realized and a wide range of entangled states, including GHZ state, W state, Dicke state, arbitrary graph state and locally maximally entanglable states, can be generated flexibly. The generation of GHZ state, W state, and Dicke state is probabilistic but heralded and the total success probability is unit. In addition, the arbitrary graph state and locally maximally entanglable states generation is deterministic, flexible, and highly efficient. Especially, with the “simultaneous” generation pattern, the complexity of the graph state generation and locally maximally entanglable states generation could be reduced greatly, providing a more efficient and feasible way to generate the entangled states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  2. Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895–1899

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys Rev Lett, 1992, 69: 2881–2884

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Bouwmeester D, Pan JW, Daniell M, et al. Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys Rev Lett, 1999, 82: 1345–1349

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Zhao J Q, Lu H X, Wang X Q. Preparation of generalized Greenberger-Horne-Zeilinger and measurement of nonlocality (in Chinese). Sci Sin-Phys Mech Astron, 2011, 41: 1198–1202

    Article  Google Scholar 

  6. Zhao Z, Yang T, Chen Y A, et al. Experimental violation of local realism by four-photon greenberger-horne-zeilinger entanglement. Phys Rev Lett, 2004, 91: 180401

    Article  Google Scholar 

  7. Cao L Z, Zhao J Q, Wang X Q, et al. Experimental preparation and nonlocality of the high-pure four-photon Greenberger-Horne-Zeilinger states (in Chinese). Sci Sin-Phys Mech Astron, 2013, 43: 1079–1083

    Google Scholar 

  8. Huang Y F, Liu B H, Peng L, et al. Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state. Nat Commun, 2011, 2: 546

    Article  ADS  Google Scholar 

  9. Yao X C, Wang T X, Xu P, et al. Observation of eight-photon entanglement. Nat Photon, 2012, 6: 225–228

    Article  ADS  Google Scholar 

  10. Yao X C, Wang T X, Chen H Z, et al. Experimental demonstration of topological error correction. Nature (London), 2012, 482: 489–494

    Article  ADS  Google Scholar 

  11. Dür W, Vidal G, Cirac J I. Three qubits can be entangled in two inequivalent ways. Phys Rev A, 2 2000, 62: 062314

    Article  Google Scholar 

  12. Dür W.M Multipartite entanglement that is robust against disposal of particles. Phys Rev A, 2 2001, 63: R020303

    Google Scholar 

  13. Koashi M, Buåek V, Imoto N. Entangled webs: Tight bound for symmetric sharing of entanglement. Phys Rev A, 2000, 62: R050302

    Article  ADS  Google Scholar 

  14. Joo J, Lee J, Jang J, et al. Quantum secure communication via a W state. J Korean Phys Soc, 2005, 46: 763–768

    Google Scholar 

  15. D’Hondt E, Panangaden P. The computational power of the W and GHZ states. Quantum Inf Comput, 2006, 6: 173–183

    MATH  MathSciNet  Google Scholar 

  16. Dicke R H. Coherence in spontaneous radiation processes. Phys Rev, 1954, 93: 99–110

    Article  ADS  MATH  Google Scholar 

  17. Hillery M, Bužek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1 1999, 59: 1829–1834

    Article  Google Scholar 

  18. Murao M, Jonathan D, Plenio M B, et al. Quantum telecloning and multiparticle entanglement. Phys Rev A, 1999, 59: 156–161

    Article  ADS  Google Scholar 

  19. Karlsson A, Bourennane M. Quantum teleportation using three-particle entanglement. Phys Rev A, 1998, 58: 4394–4400

    Article  ADS  MathSciNet  Google Scholar 

  20. Zhao Z, Chen Y A, Zhang A N, et al. Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature (London), 2004, 430: 54–58

    Article  ADS  Google Scholar 

  21. Kiesel N, Schmid C, Tóth G, et al. Experimental observation of four-photon entangled dicke state with high fidelity. Phys Rev Lett, 2007, 98: 063604

    Article  ADS  Google Scholar 

  22. Chiuri A, Vallone G, Bruno N, et al. Hyperentangled mixed phased dicke states: Optical design and detection. Phys Rev Lett, 2010, 105: 250501

    Article  ADS  Google Scholar 

  23. Chiuri A, Greganti C, Paternostro M, et al. Experimental quantum networking protocols via four-qubit hyperentangled Dicke states. Phys Rev Lett, 2012, 109: 173604

    Article  ADS  Google Scholar 

  24. Prevedel R, Cronenberg G, Tame M S, et al. Experimental realization of Dicke states of up to six qubits for multiparty quantum networking. Phys Rev Lett, 2009, 103: 020503

    Article  ADS  Google Scholar 

  25. Wieczorek W, Krischek R, Kiesel N, et al. Experimental entanglement of a six-photon symmetric Dicke state. Phys Rev Lett, 2009, 103: 020504

    Article  ADS  Google Scholar 

  26. Briegel H J, Raussendorf R. Persistent entanglement in arrays of interacting particles. Phys Rev Lett, 2001, 86: 910–913

    Article  ADS  Google Scholar 

  27. Raussendorf R, Briegel H J. A one-way quantum computer. Phys Rev Lett, 2001, 86: 5188–5191

    Article  ADS  Google Scholar 

  28. Raussendorf R, Browne D E, Briegel H J. Measurement-based quantum computation on cluster states. Phys Rev A, 2003, 68: 022312

    Article  ADS  Google Scholar 

  29. Hein M, Dur W, Eisert J. Entanglement in graph states and its applications. In: Casati G, Shepelyansky D L, Zoller P, et al., eds. Proceedings of the international school of physics “Enrico Fermi” on “Quantum Computers, Algorithms and Chaos”. Amsterdam: IOS Press, 2006

    Google Scholar 

  30. Nielsen M A. Optical quantum computation using cluster states. Phys Rev Lett, 2004, 93: 040503

    Article  ADS  Google Scholar 

  31. Browne D E, Rudolph T. Resource-efficient linear optical quantum computation. Phys Rev Lett, 2005, 95: 010501

    Article  ADS  Google Scholar 

  32. Bodiya T P, Duan L M. Scalable generation of graph-state entanglement through realistic linear optics. Phys Rev Lett, 2006, 97: 143601

    Article  ADS  Google Scholar 

  33. Kok P, Munro W J, Nemoto K, et al. Linear optical quantum computation with photonic qubits. Rev Mod Phys, 2007, 79: 135–174

    Article  ADS  Google Scholar 

  34. Walther P, Resch K J, Rudolph T, et al. Experimental one-way quantum computing. Nature (London), 2005, 434: 169–176

    Article  ADS  Google Scholar 

  35. Walther P, Aspelmeyer M, Resch K J, et al. Experimental violation of a cluster state Bell inequality. Phys Rev Lett, 2005, 95: 020403

    Article  ADS  Google Scholar 

  36. Kiesel N, Schmid C, Weber U, et al. Experimental analysis of a four-qubit photon cluster state. Phys Rev Lett, 2005, 95: 210502

    Article  ADS  Google Scholar 

  37. Lu C Y, Zhou X Q, Gühne O, et al. Experimental entanglement of six photons in graph states. Nat Phys, 2 2007, 3: 91–95

    Article  Google Scholar 

  38. Tokunaga Y, Kuwashiro S, Yamamoto T, et al. Generation of high-fidelity four-photon cluster state and quantum-domain demonstration of one-way quantum computing. Phys Rev Lett, 2008, 100: 210501

    Article  ADS  Google Scholar 

  39. Gao W B, Xu P, Yao X C, et al. Experimental realization of a controlled-NOT gate with four-photon six-qubit cluster states. Phys Rev Lett, 2010, 104: 020501

    Article  ADS  Google Scholar 

  40. Kruszynska C, Kraus B. Local entanglability and multipartite entanglement. Phys Rev A, 2009, 79: 052304

    Article  ADS  MathSciNet  Google Scholar 

  41. Kraus B. Local unitary equivalence of multipartite pure states. Phys Rev Lett, 2010, 104: 020504

    Article  ADS  MathSciNet  Google Scholar 

  42. Kraus B. Local unitary equivalence and entanglement of multipartite pure states. Phys Rev A, 2010, 82: 032121

    Article  ADS  MathSciNet  Google Scholar 

  43. Lin Q, He B. Efficient generation of universal two-dimensional cluster states with hybrid systems. Phys Rev A, 2010, 82: 022331

    Article  ADS  Google Scholar 

  44. Lin Q, He B. Weaving independently generated photons into an arbitrary graph state. Phys Rev A, 2011, 84: 062312

    Article  ADS  Google Scholar 

  45. Lin Q, Li J. Quantum control gates with weak cross-Kerr nonlinearity. Phys Rev A, 2009, 79: 022301

    Article  ADS  Google Scholar 

  46. Lin Q, He B. Single-photon logic gates using minimal resources. Phys Rev A, 2009, 80: 042310

    Article  ADS  Google Scholar 

  47. Lin Q, He B, Ren Y H, et al. Processing multiphoton states through operation on a single photon: Methods and applications. Phys Rev A, 2009, 80: 042311

    Article  ADS  Google Scholar 

  48. Lin Q, He B. Efficient graph state generation and operation error detection with a controlled-path gate. J Phys B: Atom Mol Opt Phys, 2013, 46: 055502

    Article  ADS  Google Scholar 

  49. Zhou X Q, Ralph T C, Kalasuwan P, et al. Adding control to arbitrary unknown quantum operations. Nat Commun, 2011, 2: 413

    Article  ADS  Google Scholar 

  50. Pittman T B, Fitch MJ, Jacobs B C. Experimental controlled-NOT logic gate for single photons in the coincidence basis. Phys Rev A, 2003, 68: 032316

    Article  ADS  Google Scholar 

  51. Ionicioiu R. Entangling spins by measuring charge: A parity-gate toolbox. Phys Rev A, 2007, 75: 032339

    Article  ADS  Google Scholar 

  52. Devitt S J, Greentree A D, Ionicioiu R. Photonic module: An ondemand resource for photonic entanglement. Phys Rev A, 2007, 76: 052312

    Article  ADS  Google Scholar 

  53. Ionicioiu R, Popescu A E, Munro W J. Generalized parity measurements. Phys Rev A, 2008, 78: 052326

    Article  ADS  Google Scholar 

  54. Lin Q. Efficient realization of loss-tolerant optical quantum computation (in Chinese). Sci Sin-Phys Mech Astron, 2011, 41: 1268–1276

    Article  Google Scholar 

  55. Reck M, Zeilinger A, Bernstein H J, et al. Experimental realization of any discrete unitary operator. Phys Rev Lett, 1994, 73: 58–61

    Article  ADS  Google Scholar 

  56. Wang C, Zhang Y, Jin G S. Dicke state generation using cross-Kerr nonlinearity. J Mod Opt, 2011, 58: 21–25

    Article  ADS  MATH  Google Scholar 

  57. Zhao C R, Ye L. Efficient scheme for the preparation of symmetric Dicke states via cross-Kerr nonlinearity. Phys Lett A, 2011, 375: 401–405

    Article  ADS  MATH  Google Scholar 

  58. Zhao C R, Ye L. Robust scheme for the preparation of symmetric Dicke states with coherence state via cross-Kerr nonlinearity. Opt Commun, 2011, 284: 541–544

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Q. Optical parity gate and a wide range of entangled states generation. Sci. China Phys. Mech. Astron. 58, 1–10 (2015). https://doi.org/10.1007/s11433-014-5620-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5620-0

Keywords

Navigation