Skip to main content
Log in

Geometrically nonlinear dynamic response of stiffened plates with moving boundary conditions

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

An approach is presented to investigate the nonlinear vibration of stiffened plates. A stiffened plate is divided into one plate and some stiffeners, with the plate considered to be geometrically nonlinear, and the stiffeners taken as Euler beams. Lagrange equation and modal superposition method are used to derive the dynamic equilibrium equations of the stiffened plate according to energy of the system. Besides, the effect caused by boundary movement is transformed into equivalent excitations. The first approximation solution of the non-resonance is obtained by means of the method of multiple scales. The primary parametric resonance and primary resonance of the stiffened plate are studied by using the same method. The accuracy of the method is validated by comparing the results with those of finite element analysis via ANSYS. Numerical examples for different stiffened plates are presented to discuss the steady response of the non-resonance and the amplitude-frequency relationship of the primary parametric resonance and primary resonance. In addition, the analysis on how the damping coefficients and the transverse excitations influence amplitude-frequency curves is also carried out. Some nonlinear vibration characteristics of stiffened plates are obtained, which are useful for engineering design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balendra T, Shanmugam N E. Free vibration of plate structures by grillage method. J Sound Vib, 1985, 99: 333–350

    Article  ADS  Google Scholar 

  2. Osama K Bedair, Troitsky M S. A study of the fundamental frequency characteristics of eccentrically and concentrically simply supported stiffened plates. Int J Mech Sci, 1997, 39(11): 1257–1272

    Article  MATH  Google Scholar 

  3. Gabor M Voros. Buckling and free vibration analysis of stiffened panels. Thin-Walled Struct, 2009, 47: 382–390

    Article  Google Scholar 

  4. Mukhopadhyay M. Vibration and stability analysis of stiffened plates by semi-analytic finite difference method-part I: Consideration of bending only. J Sound Vib, 1989, 130(1): 27–39

    Article  ADS  MATH  Google Scholar 

  5. Mukhopadhyay M. Vibration and stability analysis of stiffened plates by semi-analytic finite difference method-part II: Consideration of bending and axial displacements. J Sound Vib, 1989, 130(1): 41–53

    Article  ADS  MATH  Google Scholar 

  6. Zeng H, Bert C W. A differential quadrature analysis of vibration for rectangular stiffened plates. J Sound Vib, 2001, 241(2): 247–252

    Article  ADS  Google Scholar 

  7. Peng L X, Liew K M, Kitipornchai S. Buckling and free vibration analyses of stiffened plates using the FSDT mesh-free method. J Sound Vib, 2006, 289: 421–449

    Article  ADS  Google Scholar 

  8. Sapountzakis E J, Mokos V G. An improved model for the dynamic analysis of plates stiffened by parallel beams. Eng Struct, 2008, 30: 1720–1733

    Article  Google Scholar 

  9. Dozio L, Ricciardi M. Free vibration analysis of ribbed plates by a combined analytical-numerical method. J Sound Vib, 2009, 319: 681–697

    Article  ADS  Google Scholar 

  10. Xu H A, Du J T, Li W L. Vibrations of rectangular plates reinforced by any number of beams of arbitrary lengths and placement angles. J Sound Vib, 2010, 329: 3759–3779

    Article  ADS  Google Scholar 

  11. Li R, Zhong Y, Tian B, et al. On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates. Appl Math Lett, 2009, 22(12): 1821–1827

    Article  MATH  MathSciNet  Google Scholar 

  12. Li R, Tian B, Zhong Y. Analytical bending solutions of free orthotropic rectangular thin plates under arbitrary loading. Meccanica, 2013, 48(10): 2497–2510

    Article  MathSciNet  Google Scholar 

  13. Ahmad R R, Hamidreza R H. A semi-analytical solution for forced vibrations response of rectangular orthotropic plates with various boundary conditions. J Mech Sci Tech, 2010, 24(1): 357–364

    Article  Google Scholar 

  14. Jafari A A, Eftekhari S A. An efficient mixed methodology for free vibration and buckling analysis of orthotropic rectangular plates. Appl Math Comput, 2011, 218(6): 2670–2692

    Article  MATH  MathSciNet  Google Scholar 

  15. Andrianov I V, Danishevs’kyy V V, Awrejcewicz J. An artificial small perturbation parameter and nonlinear plate vibrations. J Sound Vib, 2005, 283: 561–571

    Article  ADS  Google Scholar 

  16. Stoykov S, Ribeiro P. Periodic geometrically nonlinear free vibrations of circular plates. J Sound Vib, 2008, 315: 536–555

    Article  ADS  Google Scholar 

  17. Thomas O, Bilbao S. Geometrically nonlinear flexural vibrations of plates: In-plane boundary conditions and some symmetry properties. J Sound Vib, 2008, 315: 569–590

    Article  ADS  Google Scholar 

  18. Singha M K, Daripa R. Nonlinear vibration and dynamic stability analysis of composite plates. J Sound Vib, 2009, 328: 541–554

    Article  ADS  Google Scholar 

  19. Peng J S, Yuan Y Q, Yang J, et al. A semi-analytic approach for the nonlinear dynamic response of circular plates. Appl Math Modelling, 2009, 33: 4303–4313

    Article  MATH  MathSciNet  Google Scholar 

  20. Yang J, Hao Y X, Zhang W, et al. Nonlinear dynamic response of a functionally graded plate with a through-width surface crack. Nonlinear Dyn, 2010, 59: 207–219

    Article  MATH  Google Scholar 

  21. Amabili M. Geometrically nonlinear vibrations of rectangular plates carrying a concentrated mass. J Sound Vib, 2010, 329: 4501–4514

    Article  ADS  Google Scholar 

  22. Amabili M. Nonlinear vibrations of rectangular plates with different boundary conditions: Theory and experiments. Comput Struct, 2004, 82: 2587–2605

    Article  Google Scholar 

  23. Amabili M. Theory and experiments for large-amplitude vibrations of rectangular plates with geometric imperfections. J Sound Vib, 2006, 291: 539–565

    Article  ADS  Google Scholar 

  24. Amabili M. Nonlinear vibrations of circular cylindrical panels. J Sound Vib, 2005, 281: 509–535

    Article  ADS  Google Scholar 

  25. Daya E M, Azrar L, Potier-Ferry M. An amplitude equation for the non-linear vibration of viscoelastically damped sandwich beams. J Sound Vib, 2003, 271(3): 789–813

    ADS  Google Scholar 

  26. Touze C, Amabili M. Nonlinear normal modes for damped geometrically nonlinear systems: application to reduced-order modelling of harmonically forced structures. J Sound Vib, 2006, 298: 958–981

    Article  ADS  Google Scholar 

  27. Ribeiro P, Petyt M. Nonlinear vibration of plates by the hierarchical finite element and continuation methods. Int J Mech Sci, 1999, 41: 437–459

    Article  MATH  Google Scholar 

  28. Boumediene F, Miloudi A, Cadou J M, et al. Nonlinear forced vibration of damped plates by an asymptotic numerical method. Comput Struct, 2009, 87: 1508–1515

    Article  Google Scholar 

  29. Ma N J, Wang R H, Li P J. Nonlinear dynamic response of a stiffened plate with four edges clamped under primary resonance excitation. Nonlinear Dyn, 2012, 70(1): 627–648

    Article  MathSciNet  Google Scholar 

  30. Beidouri Z, Benamar R, EI Kadiri M. Geometrically non-linear transverse vibration of C-S-S-S and C-S-C-S rectangular plates. Int J Non-linear Mech, 2006, 41(1): 57–77

    Article  MATH  Google Scholar 

  31. Amabili M. Nonlinear Vibrations and Stability of Shells and Plates. Cambridge: Cambridge University Press, 2008

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RongHui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, N., Wang, R., Han, Q. et al. Geometrically nonlinear dynamic response of stiffened plates with moving boundary conditions. Sci. China Phys. Mech. Astron. 57, 1536–1546 (2014). https://doi.org/10.1007/s11433-014-5523-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5523-0

Keywords

Navigation