Skip to main content
Log in

Secure cooperative output regulation for linear parameter-varying systems under DoS attacks: a resilient observer approach

  • Research Paper
  • Special Topic: Control, Optimization, and Learning for Networked Systems
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper investigates the cooperative output regulation problem of heterogeneous linear parameter-varying multi-agent systems under denial-of-service (DoS) attacks. The matrix and state of the exosystem are taken to be unknown to the followers. Moreover, with the assumption that only a directed spanning tree exists in the communication topology, a resilient observer is proposed to exponentially estimate the global information, which can also be effective under DoS attacks with a certain intensity. Afterward, to avoid using the exact value of the exosystem matrix, a distributed online algorithm is proposed, through which the linear parameter-varying output regulation equation is asymptotically solved. Based on the resilient observer and the solution of the output regulation equation, a distributed regulator is proposed to achieve asymptotic cooperative output regulation for all agents. Some numerical simulations are conducted to verify the effectiveness of the proposed observer, algorithm, and controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu M, Liu L. Leader-following consensus of multiple uncertain euler-lagrange systems with unknown dynamic leader. IEEE Trans Automat Contr, 2019, 64: 4167–4173

    Article  MathSciNet  MATH  Google Scholar 

  2. Zhang H, Liu J, Wang Z, et al. Distributed adaptive event-triggered control and stability analysis for vehicular platoon. IEEE Trans Intell Transp Syst, 2021, 22: 1627–1638

    Article  Google Scholar 

  3. Li Y, Zhang H, Wang Z, et al. Decentralized control for large-scale systems with actuator faults and external disturbances: a data-driven method. IEEE Trans Neural Netw Learn Syst, 2023. doi: https://doi.org/10.1109/TNNLS.2023.3245102

  4. Davison E. The robust control of a servomechanism problem for linear time-invariant multivariable systems. IEEE Trans Automat Contr, 1976, 21: 25–34

    Article  MathSciNet  MATH  Google Scholar 

  5. Isidori A, Byrnes C I. Output regulation of nonlinear systems. IEEE Trans Automat Contr, 1990, 35: 131–140

    Article  MathSciNet  MATH  Google Scholar 

  6. Serrani A, Isidori A, Marconi L. Semi-global nonlinear output regulation with adaptive internal model. IEEE Trans Automat Contr, 2001, 46: 1178–1194

    Article  MATH  Google Scholar 

  7. Huang J, Chen Z. A general framework for tackling the output regulation problem. IEEE Trans Automat Contr, 2004, 49: 2203–2218

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang J. Nonlinear Output Regulation. Philadelphia: SIAM, 2004

    Book  MATH  Google Scholar 

  9. Wang X, Hong Y, Huang J, et al. A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Trans Automat Contr, 2010, 55: 2891–2895

    Article  MathSciNet  MATH  Google Scholar 

  10. Su Y F, Huang J. Cooperative output regulation of linear multi-agent systems. IEEE Trans Automat Contr, 2012, 57: 1062–1066

    Article  MathSciNet  MATH  Google Scholar 

  11. Cai H, Lewis F L, Hu G, et al. The adaptive distributed observer approach to the cooperative output regulation of linear multi-agent systems. Automatica, 2017, 75: 299–305

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang X, Dong J. Reliable leader-to-follower formation control of multiagent systems under communication quantization and attacks. IEEE Trans Syst Man Cybern Syst, 2020, 50: 89–99

    Article  Google Scholar 

  13. Huo S C, Huang D L, Zhang Y. Secure output synchronization of heterogeneous multi-agent systems against false data injection attacks. Sci China Inf Sci, 2022, 65: 162204

    Article  MathSciNet  Google Scholar 

  14. Sun Q, Chen J C, Shi Y. Event-triggered robust MPC of nonlinear cyber-physical systems against DoS attacks. Sci China Inf Sci, 2022, 65: 110202

    Article  MathSciNet  Google Scholar 

  15. Imer O C, Yüksel S, Başar T. Optimal control of LTI systems over unreliable communication links. Automatica, 2006, 42: 1429–1439

    Article  MathSciNet  MATH  Google Scholar 

  16. Pasqualetti F, Dorfler F, Bullo F. Attack detection and identification in cyber-physical systems. IEEE Trans Automat Contr, 2013, 58: 2715–2729

    Article  MathSciNet  MATH  Google Scholar 

  17. de Persis C, Tesi P. Input-to-state stabilizing control under denial-of-service. IEEE Trans Automat Contr, 2015, 60: 2930–2944

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang X, Dong J. Robust dynamic actuator failure compensation control of nonlinear systems via cooperative interaction design. IEEE Trans Cybern, 2022, 52: 6013–6023

    Article  Google Scholar 

  19. Feng Z, Hu G. Secure cooperative event-triggered control of linear multiagent systems under DoS attacks. IEEE Trans Contr Syst Technol, 2020, 28: 741–752

    Article  Google Scholar 

  20. Shames I, Teixeira A M H, Sandberg H, et al. Distributed fault detection for interconnected second-order systems. Automatica, 2011, 47: 2757–2764

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang D, Liu L, Feng G. Consensus of heterogeneous linear multiagent systems subject to aperiodic sampled-data and DoS attack. IEEE Trans Cybern, 2019, 49: 1501–1511

    Article  Google Scholar 

  22. Feng Z, Hu G, Wen G. Distributed consensus tracking for multi-agent systems under two types of attacks. Int J Robust Nonlinear Control, 2016, 26: 896–918

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang H, Ye D. Observer-based fixed-time secure tracking consensus for networked high-order multiagent systems against DoS attacks. IEEE Trans Cybern, 2022, 52: 2018–2031

    Article  Google Scholar 

  24. Zhang D, Feng G. A new switched system approach to leader-follower consensus of heterogeneous linear multiagent systems with DoS attack. IEEE Trans Syst Man Cybern Syst, 2021, 51: 1258–1266

    Article  Google Scholar 

  25. Zhang D, Feng G, Shi Y, et al. Physical safety and cyber security analysis of multi-agent systems: a survey of recent advances. IEEE CAA J Autom Sin, 2021, 8: 319–333

    Article  MathSciNet  Google Scholar 

  26. Zhang Y F, Wu Z-G, Wu Z Z, et al. Resilient observer-based event-triggered control for cyber-physical systems under asynchronous denial-of-service attacks. Sci China Inf Sci, 2022, 65: 142203

    Article  MathSciNet  Google Scholar 

  27. Xu Y, Fang M, Pan Y-J, et al. Event-triggered output synchronization for nonhomogeneous agent systems with periodic denial-of-service attacks. Int J Robust Nonlinear Control, 2021, 31: 1851–1865

    Article  MathSciNet  Google Scholar 

  28. Li X M, Yao D, Li P, et al. Secure finite-horizon consensus control of multiagent systems against cyber attacks. IEEE Trans Cybern, 2022, 52: 9230–9239

    Article  Google Scholar 

  29. Deng C, Wen C. Distributed resilient observer-based fault-tolerant control for heterogeneous multiagent systems under actuator faults and DoS attacks. IEEE Trans Control Netw Syst, 2020, 7: 1308–1318

    Article  MathSciNet  MATH  Google Scholar 

  30. Yan J, Deng C, Wen C. Resilient output regulation in heterogeneous networked systems under Byzantine agents. Automatica, 2021, 133: 109872

    Article  MathSciNet  MATH  Google Scholar 

  31. Bakka T, Karimi H R, Christiansen S. Linear parameter-varying modelling and control of an offshore wind turbine with constrained information. IET Control Theor Appl, 2014, 8: 22–29

    Article  MathSciNet  MATH  Google Scholar 

  32. Ichikawa A, Katayama H. Output regulation of time-varying systems. Syst Control Lett, 2006, 55: 999–1005

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang R, Zhang H, Wang J. Linear parameter-varying controller design for four-wheel independently actuated electric ground vehicles with active steering systems. IEEE Trans Control Syst Tech, 2014, 22: 1281–1296

    Article  Google Scholar 

  34. Theis J, Seiler P, Werner H. LPV model order reduction by parameter-varying oblique projection. IEEE Trans Contr Syst Technol, 2018, 26: 773–784

    Article  Google Scholar 

  35. Mesbahi A, Velni J M. Distributed observer-based cooperative control for output regulation in multi-agent linear parameter-varying systems. IET Control Theor Appl, 2017, 11: 1394–1403

    Article  MathSciNet  Google Scholar 

  36. Horn R A, Johnson C R. Topics in Matrix Analysis. Cambridge: Cambridge University Press, 1994

    MATH  Google Scholar 

  37. Apkarian P, Gahinet P, Becker G. Self-scheduled H control of linear parameter-varying systems: a design example. Automatica, 1995, 31: 1251–1261

    Article  MathSciNet  MATH  Google Scholar 

  38. Barmish B. Stabilization of uncertain systems via linear control. IEEE Trans Automat Contr, 1983, 28: 848–850

    Article  MathSciNet  MATH  Google Scholar 

  39. Blanchini F, Miani S, Savorgnan C. Stability results for linear parameter varying and switching systems. Automatica, 2007, 43: 1817–1823

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 62273255, 62150026), in part by Shanghai International Science and Technology Cooperation Project (Grant Nos. 21550760900, 22510712000), in part by Shanghai Municipal Science and Technology Major Project (Grant No. 2021SHZDZX0100), and in part by Fundamental Research Funds for the Central Universities. Thanks to Mr. Yue HU and Editor Leonardo for language polishing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Zhang, H., Huang, C. et al. Secure cooperative output regulation for linear parameter-varying systems under DoS attacks: a resilient observer approach. Sci. China Inf. Sci. 66, 190203 (2023). https://doi.org/10.1007/s11432-022-3792-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3792-5

Keywords

Navigation