Skip to main content
Log in

In-situ analysis of laser-induced breakdown spectra for online monitoring of femtosecond laser machining of sapphire

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Laser-induced breakdown spectroscopy (LIBS) is widely used for elemental analysis. However, its application for monitoring and analyzing a laser machining process by examining the changes in spectral information warrants further investigation. In this study, we investigate the effect of laser parameters on the spectra, variations in the time-resolved plasma emission spectra, and the relationship between the morphology of craters and plasma plume evolution during the femtosecond (fs) laser ablation of sapphire. The Boltzmann plot method and Stark’s broadening model are employed to estimate the temporal temperature and electron density of the plasma plume, revealing the process of plasma evolution. This study aims to demonstrate the feasibility of LIBS for online monitoring of laser processing through experimental data and theoretical explanations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hahn D W, Omenetto N. Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields. Appl Spectrosc, 2012, 66: 347–419

    Article  Google Scholar 

  2. Tognoni E, Palleschi V, Corsi M, et al. Quantitative micro-analysis by laser-induced breakdown spectroscopy: A review of the experimental approaches. SpectroChim Acta Part B-Atomic Spectr, 2002, 57: 1115–1130

    Article  Google Scholar 

  3. Cremers D A, Radziemski L J. Handbook of Laser-induced Breakdown Spectroscopy. Chichester: John Wiley & Sons, 2013

    Book  Google Scholar 

  4. Noll R. Laser-induced Breakdown Spectroscopy. Berlin: Springer, 2012. 7–15

    Google Scholar 

  5. Zhou Z, Ge Y, Liu Y. Real-time monitoring of carbon concentration using laser-induced breakdown spectroscopy and machine learning. Opt Express, 2021, 29: 39811–39823

    Article  Google Scholar 

  6. Hedwig R, Lahna K, Idroes R, et al. Food analysis employing high energy nanosecond laser and low pressure He ambient gas. Micro-Chem J, 2019, 147: 356–364

    Google Scholar 

  7. Haider A F M Y, Khan Z H. Determination of Ca content of coral skeleton by analyte additive method using the LIBS technique. Optics Laser Tech, 2012, 44: 1654–1659

    Article  Google Scholar 

  8. Li W, Lu J, Dong M, et al. Quantitative analysis of calorific value of coal based on spectral preprocessing by laser-induced breakdown spectroscopy (LIBS). Energy Fuels, 2017, 32: 24–32

    Article  Google Scholar 

  9. Sdvizhenskii P A, Lednev V N, Grishin M Y, et al. Deep ablation and LIBS depth elemental profiling by combining nano- and microsecond laser pulses. SpectroChim Acta Part B-Atomic Spectr, 2021, 177: 106054

    Article  Google Scholar 

  10. Altowyan A S, El-Hussein A, Ahmed H A, et al. Influence of the laser wavelength on the self-absorption of Cu and Ni spectral lines by using LIBS technique. Optical Mater, 2022, 131: 112731

    Article  Google Scholar 

  11. Jiao J, Guo Z. Analysis of plasma-mediated ablation in aqueous tissue. Appl Surf Sci, 2012, 258: 6266–6271

    Article  Google Scholar 

  12. Sun X, Zou Q, Zhou H, et al. LIBS repeatability study based on the pulsed laser ablation volume measuring by the extended depth of field microscopic three-dimensional reconstruction imaging. Optics Lasers Eng, 2022, 153: 107003

    Article  Google Scholar 

  13. Hwang D J, Jeon H, Grigoropoulos C P, et al. Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film. Appl Phys Lett, 2007, 91: 251118

    Article  Google Scholar 

  14. Zorba V, Mao X, Russo R E. Femtosecond laser induced breakdown spectroscopy of Cu at the micron/sub-micron scale. SpectroChim Acta Part B-Atomic Spectr, 2015, 113: 37–42

    Article  Google Scholar 

  15. Shiby S, Vasa N J. Nanosecond laser-assisted micro-scribing of a copper film on a dielectric material with laser-induced breakdown spectroscopy based monitoring. Optics Laser Tech, 2022, 147: 107685

    Article  Google Scholar 

  16. Lednev V N, Sdvizhenskii P A, Stavertiy A Y, et al. Online and in situ laser-induced breakdown spectroscopy for laser welding monitoring. SpectroChim Acta Part B-Atomic Spectr, 2021, 175: 106032

    Article  Google Scholar 

  17. Sheta S, Afgan M S, Jiacen L, et al. Insights into enhanced repeatability of femtosecond laser-induced plasmas. ACS Omega, 2020, 5: 30425–30435

    Article  Google Scholar 

  18. Li Q K, Cao J J, Yu Y H, et al. Fabrication of an anti-reflective microstructure on sapphire by femtosecond laser direct writing. Opt Lett, 2017, 42: 543–546

    Article  Google Scholar 

  19. Schaffer C B, Brodeur A, Mazur E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas Sci Technol, 2001, 12: 1784–1794

    Article  Google Scholar 

  20. Yu J, Ma Q, Motto-Ros V, et al. Generation and expansion of laser-induced plasma as a spectroscopic emission source. Front Phys, 2012, 7: 649–669

    Article  Google Scholar 

  21. Yu X, Zhang Q, Qi D, et al. Femtosecond laser-induced large area of periodic structures on chalcogenide glass via twice laser direct-writing scanning process. Optics Laser Tech, 2020, 124: 105977

    Article  Google Scholar 

  22. Xu Z, Xu B, Peng X, et al. Laser-ablation dependence of fiber-laser-based laser-induced breakdown spectroscopy for determining Cu, Mg, and Mn elements in aluminum alloys. J Anal At Spectrom, 2021, 36: 2501–2508

    Article  Google Scholar 

  23. Shin J. Investigation of the surface morphology in glass scribing with a UV picosecond laser. Optics Laser Tech, 2019, 111: 307–314

    Article  Google Scholar 

  24. Li H, Liu T, Fu Y, et al. Improving the accuracy of high-repetition-rate LIBS based on laser ablation and scanning parameters optimization. Opt Express, 2022, 30: 37470–37483

    Article  Google Scholar 

  25. Hwang D J, Grigoropoulos C P, Yoo J, et al. Optical near-field ablation-induced plasma characteristics. Appl Phys Lett, 2006, 89: 254101

    Article  Google Scholar 

  26. Park M, Balkey M M, Mao X, et al. Spatio-temporal ablation dynamics and plasma chemistry of aluminum induced by temporally modulated ytterbium fiber laser. Appl Phys Lett, 2021, 119: 224103

    Article  Google Scholar 

  27. Harilal S S, Tillack M S, O’Shay B, et al. Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field. Phys Rev E, 2004, 69: 026413

    Article  Google Scholar 

  28. Harilal S S, Bindhu C V, Tillack M S, et al. Plume splitting and sharpening in laser-produced aluminium plasma. J Phys D-Appl Phys, 2002, 35: 2935–2938

    Article  Google Scholar 

  29. Farid N, Harilal S S, Ding H, et al. Dynamics of ultrafast laser plasma expansion in the presence of an ambient. Appl Phys Lett, 2013, 103: 191112

    Article  Google Scholar 

  30. Park M, Jeun J, Han G, et al. Time-resolved emission and scattering imaging of plume dynamics and nanoparticle ejection in femtosecond laser ablation of silver thin films. Appl Phys Lett, 2020, 116: 234105

    Article  Google Scholar 

  31. Wang Q, Chen A, Liu Y, et al. Comparison of emission signals for femtosecond and nanosecond laser-ablated Cu plasmas by changing the distance from focusing-lens to target-surface at different target temperatures. SpectroChim Acta Part B-Atomic Spectr, 2021, 185: 106302

    Article  Google Scholar 

  32. Zhang S, Wang X, He M, et al. Laser-induced plasma temperature. SpectroChim Acta Part B-Atomic Spectr, 2014, 97: 13–33

    Article  Google Scholar 

  33. Feng J, Wang Z, Li Z, et al. Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters. SpectroChim Acta Part B-Atomic Spectr, 2010, 65: 549–556

    Article  Google Scholar 

  34. Aguilera J A, Aragón C. Multi-element Saha–Boltzmann and Boltzmann plots in laser-induced plasmas. SpectroChim Acta Part B-Atomic Spectr, 2007, 62: 378–385

    Article  Google Scholar 

  35. Ahmad K, Tawfik W, Farooq W A, et al. Analysis of alumina-based titanium carbide composites by laser-induced breakdown spectroscopy. Appl Phys A, 2014, 117: 1315–1322

    Article  Google Scholar 

  36. NIST Atomic Spectra Database. https://www.nist.gov/pml/atomic-spectra-database

  37. Sansonetti J E, Martin W C. Handbook of basic atomic spectroscopic data. J Phys Chem Reference Data, 2005, 34: 1559–2259

    Article  Google Scholar 

  38. Kelleher D E, Podobedova L I. Atomic transition probabilities of aluminum. A critical compilation. J Phys Chem Reference Data, 2008, 37: 709–911

    Article  Google Scholar 

  39. Li Y, Wu R, Dai Q, et al. Spectroscopic study on the time evolution behaviors of the double laser-induced breakdown of Al plasma. Optik, 2017, 147: 32–38

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to DongFeng Qi or HongYu Zheng.

Additional information

This work was supported by the National Key R&D Program of China (Grant Nos. 2022YFB4600402 and 2022YFE0199100), the Natural Science Foundation of Shandong (Grant Nos. ZR2022MF030 and ZR2020ME164), and the Natural Science Foundation of Zhejiang (GrantNo. LY21F050002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shangguan, S., Zhang, J., Li, Z. et al. In-situ analysis of laser-induced breakdown spectra for online monitoring of femtosecond laser machining of sapphire. Sci. China Technol. Sci. 67, 73–82 (2024). https://doi.org/10.1007/s11431-023-2499-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2499-0

Navigation