Skip to main content
Log in

Soft-rigid coupling grippers: Collaboration strategies and integrated fabrication methods

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Continuously increasing applications of robot technologies in unstructured environments put higher requirements on the robotic grippers’ performance, such as interaction capability, output force range, and controllability. However, currently, it is hard for either rigid or soft grippers to meet these requirements, as single soft or rigid structures alone are difficult to effectively overcome/alleviate their inherent defects, e.g., low compliance of rigid structures and low output force of soft structures. To deal with these difficulties, soft-rigid coupling grippers, or hybrid grippers are proposed. Technically, the soft-rigid coupling is a promising design that combines soft and rigid structures, in order to exploit their respective advantages, such as the strength of rigid structures and compliance of soft structures, in the same set of the gripper system. For the first time, herein, this paper systematically discusses the collaboration strategies of the existing hybrid robotic grippers, by classifying them as Rigid-active-soft-passive, Rigid-passive-soft-active, and Rigid-active-soft-active. At the same time, we introduce the integrated fabrication methods of hybrid grippers, through which the soft and rigid structures with great stiffness and property differences can be coupled together to construct a stable system. Also, possible performance improvements on soft-rigid coupling design for gripper systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Rus D, Tolley M T. Design, fabrication and control of soft robots. Nature, 2015, 521: 467–475

    Article  Google Scholar 

  2. Lee C, Kim M, Kim Y J, et al. Soft robot review. Int J Control Autom Syst, 2017, 15: 3–15

    Article  Google Scholar 

  3. Chen F, Wang M Y. Design optimization of soft robots: A review of the state of the art. IEEE Robot Automat Mag, 2020, 27: 27–43

    Article  Google Scholar 

  4. Gu G, Zhang N, Xu H, et al. A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback. Nat Biomed Eng, 2021, doi: https://doi.org/10.1038/s41551-021-00767-0

  5. Deimel R, Brock O. A novel type of compliant and underactuated robotic hand for dexterous grasping. Int J Robotics Res, 2016, 35: 161–185

    Article  Google Scholar 

  6. Hao Y, Gong Z, Xie Z, et al. Universal soft pneumatic robotic gripper with variable effective length. In: Proceedings of 2016 35th Chinese Control Conference (CCC). Chengdu, 2016. 6109–6114

  7. Liu C, Mu H, Chen D, et al. New rigid-soft coupling structure and its stiffness adjusting device. In: Proceedings of 12th International Conference on Intelligent Robotics and Applications (ICIRA). Shenyang, 2019. 51–63

  8. De Falco I, Cianchetti M, Menciassi A. A soft multi-module manipulator with variable stiffness for minimally invasive surgery. Bioinspir Biomim, 2017, 12: 56008

    Article  Google Scholar 

  9. Chopra S, Tolley M T, Gravish N. Granular jamming feet enable improved foot-ground interactions for robot mobility on deformable ground. IEEE Robot Autom Lett, 2020, 5: 3975–3981

    Article  Google Scholar 

  10. Park W, Lee D, Bae J. A hybrid jamming structure combining granules and a chain structure for robotic applications. Soft Robotics, 2021, 9: 669–679

    Article  Google Scholar 

  11. Hao Y, Gao J, Lv Y, et al. Low melting point alloys enabled stiffness tunable advanced materials. Adv Funct Mater, 2022, 32: 2201942

    Article  Google Scholar 

  12. Wang H, Chen Z, Zuo S. Flexible manipulator with low-melting-point alloy actuation and variable stiffness. Soft Robotics, 2021, 9: 577–590

    Article  Google Scholar 

  13. Liu H, Tian H, Li X, et al. Shape-programmable, deformation-locking, and self-sensing artificial muscle based on liquid crystal elastomer and low—melting point alloy. Sci Adv, 2022, 8: eabn5722

    Article  Google Scholar 

  14. Dong Y Z, Seo Y, Choi H J. Recent development of electro-responsive smart electrorheological fluids. Soft Matter, 2019, 15: 3473–3486

    Article  Google Scholar 

  15. Zatopa A, Walker S, Menguc Y. Fully soft 3d-printed electroactive fluidic valve for soft hydraulic robots. Soft Robotics, 2018, 5: 258–271

    Article  Google Scholar 

  16. McCracken J M, Donovan B R, White T J. Materials as machines. Adv Mater, 2020, 32: 1906564

    Article  Google Scholar 

  17. Kumar J S, Paul P S, Raghunathan G, et al. A review of challenges and solutions in the preparation and use of magnetorheological fluids. Int J Mech Mater Eng, 2019, 14: 13

    Article  Google Scholar 

  18. Nadgorny M, Ameli A. Functional polymers and nanocomposites for 3D printing of smart structures and devices. ACS Appl Mater Interfaces, 2018, 10: 17489–17507

    Article  Google Scholar 

  19. Rafiee M, Farahani R D, Therriault D. Multi-material 3D and 4D printing: A survey. Adv Sci, 2020, 7: 1902307

    Article  Google Scholar 

  20. Biswas M C, Chakraborty S, Bhattacharjee A, et al. 4D printing of shape memory materials for textiles: Mechanism, mathematical modeling, and challenges. Adv Funct Mater, 2021, 31: 2100257

    Article  Google Scholar 

  21. Cui Y, Li D, Gong C, et al. Bioinspired shape memory hydrogel artificial muscles driven by solvents. ACS Nano, 2021, 15: 13712–13720

    Article  Google Scholar 

  22. Xia Y, He Y, Zhang F, et al. A review of shape memory polymers and composites: Mechanisms, materials, and applications. Adv Mater, 2021, 33: 2000713

    Article  Google Scholar 

  23. Guo X Y, Li W B, Gao Q H, et al. Self-locking mechanism for variable stiffness rigid-soft gripper. Smart Mater Struct, 2020, 29: 35033

    Article  Google Scholar 

  24. Fu H C, Ho J D L, Lee K H, et al. Interfacing soft and hard: A spring reinforced actuator. Soft Robotics, 2020, 7: 44–58

    Article  Google Scholar 

  25. Zhu J, Chai Z, Yong H, et al. Bioinspired multimodal multipose hybrid fingers for wide-range force, compliant, and stable grasping. Soft Robotics, 2023, 10: 30–39

    Article  Google Scholar 

  26. Zuo Q, Xu Y, Xie F, et al. Dynamic modeling of a novel kind of rigid-soft coupling biomimetic robotic fish. J Intell Robot Syst, 2022, 105: 41

    Article  Google Scholar 

  27. Zhao J, Wu C, Wang W, et al. Design and implementation of variable stiffness rigid-soft coupling pneumatic actuated joint. In: Proceedings of 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR). 2021. 679–683

  28. Jin J, Wang W, Xu Y, et al. Control of rigid-soft-coupled continuum arm driven by pneumatic muscles. In: Proceedings of 2022 International Conference on Advanced Robotics and Mechatronics (ICARM). Guilin, 2022. 764–768

  29. Mannam P, Rudich A, Zhang K, et al. A low-cost compliant gripper using cooperative mini-delta robots for dexterous manipulation. In: Proceedings of Conference on Robotics-Science and Systems. online, 2021

  30. Mimori Y, Wang Z, Hirai S. A novel binding hand with closed loop thread capable of grasping small-diameter objects. In: Proceedings of 2nd IEEE International Conference on Soft Robotics (RoboSoft). Seoul, South Korea, 2019. 310–315

  31. Xia Q, Xu L, Liu C, et al. An omnidirectional encircled deployable polyhedral gripper for contactless delicate midwater creatures sampling. Adv Eng Mater, 2023, 25: 202201416

    Article  Google Scholar 

  32. Li L, Tian W, OuYang Z, et al. A rigid-flexible coupling three-finger soft gripper for fruit picking. In: Proceedings of 2021 40th Chinese Control Conference (CCC). Shanghai, 2021. 4068–4072

  33. Nishimura T, Mizushima K, Suzuki Y, et al. Variable-grasping-mode underactuated soft gripper with environmental contact-based operation. IEEE Robot Autom Lett, 2017, 2: 1164–1171

    Article  Google Scholar 

  34. Ruotolo W, Brouwer D, Cutkosky M R. From grasping to manipulation with gecko-inspired adhesives on a multifinger gripper. Sci Robot, 2022, 6: eabi9773

    Article  Google Scholar 

  35. Shin J H, Park J G, Kim D I, et al. A universal soft gripper with the optimized fin ray finger. Int J Precis Eng Manuf Green Tech, 2021, 8: 889–899

    Article  Google Scholar 

  36. Fu J, Lin H, Prathyush I V S, et al. A Novel Discrete Variable Stiffness Gripper Based on the Fin Ray Effect. In: Proceedings of 15th International Conference on Intelligent Robotics and Applications (ICIRA). Harbin, 2022. 791–802

  37. Yang X, Wang Z, Zhang B, et al. Self-sensing robotic structures from architectured particle assemblies. Adv Intelligent Syst, 2023, 5: 2200250

    Article  Google Scholar 

  38. Coulson R, Stabile C J, Turner K T, et al. Versatile soft robot gripper enabled by stiffness and adhesion tuning via thermoplastic composite. Soft Robotics, 2021, 9: 189–200

    Article  Google Scholar 

  39. Gong S, Ding Q, Wu J, et al. Bioinspired multifunctional mechanoreception of soft-rigid hybrid actuator fingers. Adv Intelligent Syst, 2022, 4: 2100242

    Article  Google Scholar 

  40. Park W, Seo S, Bae J. A hybrid gripper with soft material and rigid structures. IEEE Robot Autom Lett, 2018, 4: 65–72

    Article  Google Scholar 

  41. Wang Y Z, Gupta U, Parulekar N, et al. A soft gripper of fast speed and low energy consumption. Sci China Tech Sci, 2019, 62: 31–38

    Article  Google Scholar 

  42. Li H, Zhou P, Zhang S, et al. A high-load bioinspired soft gripper with force booster fingers. Mechanism Machine Theor, 2022, 177: 105048

    Article  Google Scholar 

  43. Wu Z, Li X, Guo Z. A novel pneumatic soft gripper with a jointed endoskeleton structure. Chin J Mech Eng, 2019, 32: 78

    Article  Google Scholar 

  44. Wang Z, Kanegae R, Hirai S. Circular shell gripper for handling food products. Soft Robotics, 2021, 8: 542–554

    Article  Google Scholar 

  45. Subramaniam V, Jain S, Agarwal J, et al. Design and characterization of a hybrid soft gripper with active palm pose control. Int J Robotics Res, 2020, 39: 1668–1685

    Article  Google Scholar 

  46. Li H J, Xie D Y, Xie Y P. A soft pneumatic gripper with endoskeletons resisting out-of-plane bending. Actuators, 2022, 11: 246

    Article  Google Scholar 

  47. Chen C, Sun J, Wang L, et al. Pneumatic bionic hand with rigidflexible coupling structure. Materials, 2022, 15: 1358

    Article  Google Scholar 

  48. Zhang J, Wang T, Wang J, et al. Geometric confined pneumatic soft–rigid hybrid actuators. Soft Robotics, 2020, 7: 574–582

    Article  Google Scholar 

  49. Zhou P, Zhang N, Gu G. A biomimetic soft-rigid hybrid finger with autonomous lateral stiffness enhancement. Adv Intelligent Syst, 2022, 4: 2200170

    Article  Google Scholar 

  50. Chen S, Chen F, Cao Z, et al. Topology optimization of skeleton-reinforced soft pneumatic actuators for desired motions. IEEE ASME Trans Mechatron, 2021, 26: 1745–1753

    Article  Google Scholar 

  51. Lee E S, Yoon H S. Development of a rod gripper for drones using flexible fingers and bistable structures. Int J Precis Eng Manuf, 2022, 23: 1325–1335

    Article  Google Scholar 

  52. Hu Q, Huang H, Dong E, et al. A bioinspired composite finger with self-locking joints. IEEE Robot Autom Lett, 2021, 6: 1391–1398

    Article  Google Scholar 

  53. Wu M, Zheng X, Liu R, et al. Glowing sucker octopus (stauroteuthis syrtensis)-inspired soft robotic gripper for underwater self-adaptive grasping and sensing. Adv Sci, 2022, 9: e2104382

    Article  Google Scholar 

  54. Pagoli A, Chapelle F, Corrales R J, et al. A soft robotic gripper with an active palm and reconfigurable fingers for fully dexterous in-hand manipulation. IEEE Robot Autom Lett, 2021, 6: 6537–6544

    Article  Google Scholar 

  55. He L, Lu Q, Abad S A, et al. Soft fingertips with tactile sensing and active deformation for robust grasping of delicate objects. IEEE Robot Autom Lett, 2020, 5: 2714–2721

    Article  Google Scholar 

  56. Ye Y, Cheng P, Yan B, et al. Design of a novel soft pneumatic gripper with variable gripping size and mode. J Intell Robot Syst, 2022, 106: 5

    Article  Google Scholar 

  57. Li C, Gu X, Xiao X, et al. Transcend anthropomorphic robotic grasping with modular antagonistic mechanisms and adhesive soft modulations. IEEE Robot Autom Lett, 2019, 4: 2463–2470

    Article  Google Scholar 

  58. Nguyen P V, Nguyen P N, Nguyen T, et al. Hybrid robot hand for stably manipulating one group objects. Arch Mech Eng, 2022, 69: 375–391

    Google Scholar 

  59. Cheng P, Ye Y, Jia J, et al. Design of cylindrical soft vacuum actuator for soft robots. Smart Mater Struct, 2021, 30: 045020

    Article  Google Scholar 

  60. Hoang T T, Phan P T, Thai M T, et al. Bio-inspired conformable and helical soft fabric gripper with variable stiffness and touch sensing. Adv Mater Technol, 2020, 5: 2000724

    Article  Google Scholar 

  61. Wu Y, Zeng G, Xu J, et al. A bioinspired multi-knuckle dexterous pneumatic soft finger. Sens Actuat A Phys, 2023, 350: 114105

    Article  Google Scholar 

  62. Chen J, Chen B, Han K, et al. A triboelectric nanogenerator as a self-powered sensor for a soft-rigid hybrid actuator. Adv Mater Technol, 2019, 4: 1900337

    Article  Google Scholar 

  63. Ke X, Jang J, Chai Z, et al. Stiffness preprogrammable soft bending pneumatic actuators for high-efficient, conformal operation. Soft Robotics, 2021, 9: 613–624

    Article  Google Scholar 

  64. Yu M, Liu W, Zhao J, et al. Modeling and analysis of a composite structure-based soft pneumatic actuators for soft-robotic gripper. Sensors, 2022, 22: 4851

    Article  Google Scholar 

  65. Gai L, Zong X. A fully soft bionic grasping device with the properties of segmental bending shape and automatically adjusting grasping range. J Bionic Eng, 2022, 19: 1334–1348

    Article  Google Scholar 

  66. Wang L Y, Iida F. Towards “soft” self-reconfigurable robots. In: Proceedings of 4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Rome, Italy, 2012. 593–598

  67. Germann J, Dommer M, Pericet-Camara R, et al. Active connection mechanism for soft modular robots. Adv Robotics, 2012, 26: 785–798

    Article  Google Scholar 

  68. Zhou J, Chen S, Wang Z. A soft-robotic gripper with enhanced object adaptation and grasping reliability. IEEE Robot Autom Lett, 2017, 2: 2287–2293

    Article  Google Scholar 

  69. McWilliams J, Yuan Y F, Friedman J, et al. Push-on push-off: A compliant bistable gripper with mechanical sensing and actuation. In: Proceedings of 4th International Conference on Soft Robotics (RoboSoft). New Haven, CO, 2021. 622–629

  70. Jin L, Yang Y, Maldonado B O, et al. Ultrafast, programmable, and electronics-free soft robots enabled by snapping metacaps. Adv Intell Syst, 2023, doi: https://doi.org/10.1002/aisy.202300039

  71. Chen C C, Lan C C An accurate force regulation mechanism for high-speed handling of fragile objects using pneumatic grippers. IEEE Trans Automat Sci Eng, 2018, 15: 1600–1608

    Article  Google Scholar 

  72. Agarwal A, Baranwal A, Stephen S G, et al. Design and Fabrication of a Bio-inspired Soft Robotic Gripper. Singapore: Springer, 2022. 1105–1111

    Google Scholar 

  73. Liew J Y R, Chua Y S, Dai Z. Steel concrete composite systems for modular construction of high-rise buildings. Structures, 2019, 21: 135–149

    Article  Google Scholar 

  74. Dang Y, Liu Y, Hashem R, et al. Sogut: A soft robotic gastric simulator. Soft Robotics, 2021, 8: 273–283

    Article  Google Scholar 

  75. Hussain I, Al-Ketan O, Renda F, et al. Design and prototyping soft–rigid tendon-driven modular grippers using interpenetrating phase composites materials. Int J Robotics Res, 2020, 39: 1635–1646

    Article  Google Scholar 

  76. Oliveira M B, Lurie A, Ewen D, et al. Hybrid fabrication of a soft bending actuator with casting and additive manufacturing. In: Proceedings of ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference. Anaheim, CA, 2020. UNSP V05AT07A015

  77. Dragusanu M, Achilli G, Valigi M, et al. The wavejoints: A novel methodology to design soft-rigid grippers made by monolithic 3D printed fingers with adjustable joint stiffness. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2022. 6173–6179

  78. Achilli G M, Logozzo S, Valigi M C, et al. Theoretical and Experimental Characterization of A New Robotic Gripper’s Joint. In: Proceedings of the 4th International Conference of IFToMM. Italy, Naples, 2022. 738–745

  79. Zhang Y, Zhang N, Hingorani H, et al. Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing. Adv Funct Mater, 2019, 29: 1806698

    Article  Google Scholar 

  80. Sui X, Cai H, Bie D, et al. Automatic generation of locomotion patterns for soft modular reconfigurable robots. Appl Sci, 2020, 10: 1–15

    Google Scholar 

  81. Kim Y, van den Berg J, Crosby A J. Autonomous snapping and jumping polymer gels. Nat Mater, 2021, 20: 1695–1701

    Article  Google Scholar 

  82. Kwok S W, Morin S A, Mosadegh B, et al. Magnetic assembly of soft robots with hard components. Adv Funct Mater, 2014, 24: 2180–2187

    Article  Google Scholar 

  83. Zhu J Q, Pu M H, Chen H, et al. Pneumatic and tendon actuation coupled muti-mode actuators for soft robots with broad force and speed range. Sci China Tech Sci, 2022, 65: 2156–2169

    Article  Google Scholar 

  84. Lin Y Q, Zhang C, Tang W, et al. A bioinspired stress-response strategy for high-speed soft grippers. Adv Sci, 2021, 8: 2102539

    Article  Google Scholar 

  85. Baumgartner R, Kogler A, Stadlbauer J M, et al. A lesson from plants: High-speed soft robotic actuators. Adv Sci, 2020, 7: 1903391

    Article  Google Scholar 

  86. Gerez L, Chang C M, Liarokapis M. A hybrid, encompassing, three-fingered robotic gripper combining pneumatic telescopic mechanisms and rigid claws. In: Proceedings of IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). Khalifa Univ, 2020. 142–147

  87. Tang Z, Lu J, Wang Z, et al. The development of a new variable stiffness soft gripper. Int J Adv Robot Syst, 2019, 16: 1729881419879824

    Article  Google Scholar 

  88. Kim Y J, Song H, Maeng C Y. BLT gripper: An adaptive gripper with active transition capability between precise pinch and compliant grasp. IEEE Robot Autom Lett, 2020, 5: 5518–5525

    Article  Google Scholar 

  89. Tabrizian S K, Sahraeeazartamar F, Brancart J, et al. A healable resistive heater as a stimuli-providing system in self-healing soft robots. IEEE Robot Autom Lett, 2022, 7: 4574–4581

    Article  Google Scholar 

  90. Mishra A K, Wallin T J, Pan W, et al. Autonomic perspiration in 3D-printed hydrogel actuators. Sci Robot, 2020, 5: eaaz3918

    Article  Google Scholar 

  91. Tapia J, Knoop E, Mutný M, et al. Makesense: Automated sensor design for proprioceptive soft robots. Soft Robotics, 2020, 7: 332–345

    Article  Google Scholar 

  92. Yan Y, Hu Z, Yang Z, et al. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci Robot, 2021, 6: eabc8801

    Article  Google Scholar 

  93. Heiden A, Preninger D, Lehner L, et al. 3D printing of resilient biogels for omnidirectional and exteroceptive soft actuators. Sci Robot, 2023, 7: eabk2119

    Article  Google Scholar 

  94. Stuart H S, Wang S, Cutkosky M R. Tunable contact conditions and grasp hydrodynamics using gentle fingertip suction. IEEE Trans Robot, 2019, 35: 295–306

    Article  Google Scholar 

  95. Fang B, Sun F, Wu L, et al. Multimode grasping soft gripper achieved by layer jamming structure and tendon-driven mechanism. Soft Robotics, 2022, 9: 233–249

    Article  Google Scholar 

  96. Wu P C, Lin N, Lei T, et al. A new grasping mode based on a sucked-type underactuated hand. Chin J Mech Eng, 2018, 31: 94

    Article  Google Scholar 

  97. Maruyama R, Watanabe T, Uchida M. Delicate grasping by robotic gripper with incompressible fluid-based deformable fingertips. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan, 2013. 5469–5474

  98. Tawk C, Zhou H, Sariyildiz E, et al. Design, modeling, and control of a 3D printed monolithic soft robotic finger with embedded pneumatic sensing chambers. IEEE ASME Trans Mechatron, 2021, 26: 876–887

    Article  Google Scholar 

  99. She Y, Liu S Q, Yu P, et al. Exoskeleton-covered soft finger with vision-based proprioception and tactile sensing. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020. 10075–10081

  100. Hao Y F, Liu Z M, Xie Z X, et al. A variable degree-of-freedom and self-sensing soft bending actuator based on conductive liquid metal and thermoplastic polymer composites. In: Proceedings of 25th IEEE International Workshop on Intelligent Robots and Systems (IROS). Madrid, Spain, 2018. 8033–8038

  101. Song S, Drotlef D M, Majidi C, et al. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces. Proc Natl Acad Sci, 2017, 114: 201620344

    Article  Google Scholar 

  102. Nguyen P V, Luu Q K, Takamura Y. Wet adhesion of micro-patterned interfaces for stable grasping of deformable objects. In: Proceedings of IEEE International Workshop on Intelligent Robots and Systems (IROS). IEEE, 2021. 9213–9219

  103. Hu Q, Dong E, Sun D. Soft gripper design based on the integration of flat dry adhesive, soft actuator, and microspine. IEEE Trans Robot, 2021, 37: 1065–1080

    Article  Google Scholar 

  104. Di Lallo A, Catalano M, Garabini M, et al. Dynamic morphological computation through damping design of soft continuum robots. Front Robot AI, 2019, doi: https://doi.org/10.3389/frobt.2019.00023

  105. Yasuda H, Johnson K, Arroyos V, et al. Leaf-like origami with bistability for self-adaptive grasping motions. Soft Robotics, 2022, 9: 938–947

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiGang Wu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52188102 and U1613204).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhu, J., Cao, Y. et al. Soft-rigid coupling grippers: Collaboration strategies and integrated fabrication methods. Sci. China Technol. Sci. 66, 3051–3069 (2023). https://doi.org/10.1007/s11431-023-2382-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2382-x

Navigation