Skip to main content
Log in

High responsivity and fast response 8×8 β-Ga2O3 solar-blind ultraviolet imaging photodetector array

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this work, an 8×8 Ga2O3 solar-blind ultraviolet photodetector array is introduced for image sensing application. The 2-in wafer-scaled Ga2O3 thin film was grown by metalorganic chemical vapor deposition technique; and the photodetector array was fabricated through ultraviolet photolithography, lift-off, and electron-beam evaporation. In addition to the high solar-blind/visible rejection ratio of 104, every photodetector cell in the array has high performance and fast response speed, such as responsivity of 49.4 A W−1, specific detectivity of 6.8 × 1014 Jones, external quantum efficiency of 1.9 × 104%, linear dynamic range of 117.8 dB, and response time of 41 ms, respectively, indicating the high photo-response performance of the photodetector. Moreover, the photodetector array displayed uniform responsivity with a standard deviation of ∼6%, and presented a sensing image of low chromatic aberration, owing to the high resolution of the photodetector array. In a word, this work may contribute to developing Ga2O3-based optoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xie C, Lu X, Tong X, et al. Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors. Adv Funct Mater, 2019, 29: 1806006

    Article  Google Scholar 

  2. Hou Y, Mei Z, Du X. Semiconductor ultraviolet photodetectors based on ZnO and MgxZn1−xO. J Phys D-Appl Phys, 2014, 47: 283001

    Article  Google Scholar 

  3. Yang J L, Liu K W, Shen D Z. Recent progress of ZnMgO ultraviolet photodetector. Chin Phys B, 2017, 26: 047308

    Article  Google Scholar 

  4. Kong D, Zhou Y, Chai J, et al. Recent progress in InGaN-based photodetectors for visible light communication. J Mater Chem C, 2022, 10: 14080–14090

    Article  Google Scholar 

  5. Lu Y J, Lin C N, Shan C X. Optoelectronic diamond: Growth, properties, and photodetection applications. Adv Opt Mater, 2018, 6: 1800359

    Article  Google Scholar 

  6. Varshney U, Aggarwal N, Gupta G. Current advances in solar-blind photodetection technology: Using Ga2O3 and AlGaN. J Mater Chem C, 2022, 10: 1573–1593

    Article  Google Scholar 

  7. Chen H, Liu K, Hu L, et al. New concept ultraviolet photodetectors. Mater Today, 2015, 18: 493–502

    Article  Google Scholar 

  8. Chen X, Ren F, Gu S, et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors. Photon Res, 2019, 7: 381–415

    Article  Google Scholar 

  9. Xu J, Zheng W, Huang F. Gallium oxide solar-blind ultraviolet photodetectors: A review. J Mater Chem C, 2019, 7: 8753–8770

    Article  Google Scholar 

  10. Kaur D, Kumar M. A strategic review on gallium oxide based deep-ultraviolet photodetectors: Recent progress and future prospects. Adv Opt Mater, 2021, 9: 2002160

    Article  Google Scholar 

  11. Liu Z, Tang W. A review of Ga2O3 deep-ultraviolet metal-semiconductor Schottky photodiodes. J Phys D-Appl Phys, 2023, 56: 093002

    Article  Google Scholar 

  12. Liu Z, Zhi Y S, Zhang S H, et al. Ultrahigh-performance planar β-Ga2O3 solar-blind Schottky photodiode detectors. Sci China Technol Sci, 2021, 64: 59–64

    Article  Google Scholar 

  13. Ma G, Jiang W, Sun W, et al. A broadband UV-visible photodetector based on a Ga2O3/BFO heterojunction. Phys Scr, 2021, 96: 125823

    Article  Google Scholar 

  14. Yan Z Y, Li S, Liu Z, et al. Ti3C2/ε-Ga2O3 Schottky self-powered solar-blind photodetector with robust responsivity. IEEE J Sel Top Quantum Electron, 2022, 28: 1–8

    Google Scholar 

  15. Liu Z, Zhang M, Yang L, et al. Enhancement-mode normally-off β-Ga2O3:Si metal-semiconductor field-effect deep-ultraviolet phototransistor. Semicond Sci Technol, 2022, 37: 015001

    Article  Google Scholar 

  16. Zhang Z, Lin C, Yang X, et al. Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array. Carbon, 2021, 173: 427–432

    Article  Google Scholar 

  17. Li L, Ye S, Qu J, et al. Recent advances in perovskite photodetectors for image sensing. Small, 2021, 17: e2005606

    Article  Google Scholar 

  18. Liu Z, Zhi Y, Li S, et al. Comparison of optoelectrical characteristics between Schottky and Ohmic contacts to β-Ga2O3 thin film. J Phys D-Appl Phys, 2020, 53: 085105

    Article  Google Scholar 

  19. Liu Z, Du L, Zhang S H, et al. Synergetic effect of photoconductive gain and persistent photocurrent in a high-photoresponse Ga2O3 deep-ultraviolet photodetector. IEEE Trans Electron Devices, 2022, 69: 5595–5602

    Article  Google Scholar 

  20. Peng Y, Zhang Y, Chen Z, et al. Arrays of solar-blind ultraviolet photodetector based on β-Ga2O3 epitaxial thin films. IEEE Photon Technol Lett, 2018, 30: 993–996

    Article  Google Scholar 

  21. Liu Z, Zhi Y S, Zhang M L, et al. A 4 × 4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response. Chin Phys B, 2022, 31: 088503

    Article  Google Scholar 

  22. Tak B R, Singh R. Ultra-low noise and self-powered β-Ga2O3 deep ultraviolet photodetector array with large linear dynamic range. ACS Appl Electron Mater, 2021, 3: 2145–2151

    Article  Google Scholar 

  23. Zhou S, Zhang H, Peng X, et al. Fully transparent and high-performance ε-Ga2O3 photodetector arrays for solar-blind imaging and deep-ultraviolet communication. Adv Photonics Res, 2022, 3: 2200192

    Article  Google Scholar 

  24. Pratiyush A S, Muazzam U U, Kumar S, et al. Optical float-zone grown bulk β-Ga2O3-based linear MSM array of UV-C photodetectors. IEEE Photon Technol Lett, 2019, 31: 923–926

    Article  Google Scholar 

  25. Zhi Y S, Liu Z, Zhang S H, et al. 16 × 4 linear solar-blind UV photoconductive detector array based on β-Ga2O3 film. IEEE Trans Electron Devices, 2021, 68: 3435–3438

    Article  Google Scholar 

  26. Chen Y C, Lu Y J, Liu Q, et al. Ga2O3 photodetector arrays for solarblind imaging. J Mater Chem C, 2019, 7: 2557–2562

    Article  Google Scholar 

  27. Chen Y, Yang X, Zhang Y, et al. Ultra-sensitive flexible Ga2O3 solar-blind photodetector array realized via ultra-thin absorbing medium. Nano Res, 2022, 15: 3711–3719

    Article  Google Scholar 

  28. Ding M, Liang K, Yu S, et al. Aqueous-printed Ga2O3 films for high-performance flexible and heat-resistant deep ultraviolet photodetector and array. Adv Opt Mater, 2022, 10: 2200512

    Article  Google Scholar 

  29. Meng J, Li Q, Huang J, et al. Self-powered photodetector for ultralow power density UV sensing. Nano Today, 2022, 43: 101399

    Article  Google Scholar 

  30. Liu Z, Liu Y, Wang X, et al. Energy-band alignments at ZnO/Ga2O3 and Ta2O5/Ga2O3 heterointerfaces by X-ray photoelectron spectroscopy and electron affinity rule. J Appl Phys, 2019, 126: 045707

    Article  Google Scholar 

  31. Mannhart J, Schlom D G. Oxide interfaces—An opportunity for electronics. Science, 2010, 327: 1607–1611

    Article  Google Scholar 

  32. Fang S, Wang D, Kang Y, et al. Balancing the photo-induced carrier transport behavior at two semiconductor interfaces for dual-polarity photodetection. Adv Funct Mater, 2022, 32: 2202524

    Article  Google Scholar 

  33. Li Y, Zhang D, Jia L, et al. Ultrawide-bandgap (6.14 eV) (AlGa)2O3/Ga2O3 heterostructure designed by lattice matching strategy for highly sensitive vacuum ultraviolet photodetection. Sci China Mater, 2021, 64: 3027–3036

    Article  Google Scholar 

  34. Wu D, Zhao Z, Lu W, et al. Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D Schottky junction with ultrafast speed. Nano Res, 2021, 14: 1973–1979

    Article  Google Scholar 

  35. Xie C, Lu X, Liang Y, et al. Patterned growth of β-Ga2O3 thin films for solar-blind deep-ultraviolet photodetectors array and optical imaging application. J Mater Sci Tech, 2021, 72: 189–196

    Article  Google Scholar 

  36. Qin Y, Li L, Yu Z, et al. Ultra-high performance amorphous Ga2O3 photodetector arrays for solar-blind imaging. Adv Sci, 2021, 8: e2101106

    Article  Google Scholar 

  37. Qin Y, Long S, He Q, et al. Amorphous gallium oxide-based gate-tunable high-performance thin film phototransistor for solar-blind imaging. Adv Electron Mater, 2019, 5: 1900389

    Article  Google Scholar 

  38. Hou X, Zhao X, Zhang Y, et al. High-performance harsh-environment-resistant GaOx solar-blind photodetectors via defect and doping engineering. Adv Mater, 2022, 34: e2106923

    Article  Google Scholar 

  39. Chen Y, Yang X, Sun P, et al. Ga2O3 based multilevel solar-blind photomemory array with logic, arithmetic, and image storage functions. Mater Horiz, 2021, 8: 3368–3376

    Article  Google Scholar 

  40. Prabakar K, Venkatachalam S, Jeyachandran Y L, et al. Microstructure, Raman and optical studies on Cd0.6Zn0.4Te thin films. Mater Sci Eng-B, 2004, 107: 99–105

    Article  Google Scholar 

  41. Fang Y, Armin A, Meredith P, et al. Accurate characterization of next-generation thin-film photodetectors. Nat Photon, 2018, 13: 1–4

    Article  Google Scholar 

  42. Taylor G W, Simmons J G. Basic equations for statistics, recombination processes, and photoconductivity in amorphous insulators and semiconductors. J Non-Crystalline Solids, 1972, 8–10: 940–946

    Article  Google Scholar 

  43. Rose A. Recombination processes in insulators and semiconductors. Phys Rev, 1955, 97: 322–333

    Article  Google Scholar 

  44. Gong X, Tong M, Xia Y, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 2009, 325: 1665–1667

    Article  Google Scholar 

  45. Liu N, Fang G, Zeng W, et al. Direct growth of lateral ZnO nanorod UV photodetectors with Schottky contact by a single-step hydrothermal reaction. ACS Appl Mater Interfaces, 2010, 2: 1973–1979

    Article  Google Scholar 

  46. Li S, Yue J Y, Lu C, et al. Oxygen vacancies modulating self-powered photoresponse in PEDOT:PSS/ε-Ga2O3 heterojunction by trapping effect. Sci China Tech Sci, 2022, 65: 704–712

    Article  Google Scholar 

  47. Su Y K, Peng S M, Ji L W, et al. Ultraviolet ZnO nanorod photosensors. Langmuir, 2010, 26: 603–606

    Article  Google Scholar 

  48. Li S, Yue J, Yan Z, et al. Enhancing the self-powered performance in VOx/Ga2O3 heterojunction ultraviolet photodetector by hole-transport engineering. J Alloys Compd, 2022, 902: 163801

    Article  Google Scholar 

  49. Xu T, Jiang M, Wan P, et al. High-performance self-powered ultraviolet photodetector in SnO2 microwire/p-GaN heterojunction using graphene as charge collection medium. J Mater Sci Tech, 2023, 138: 183–192

    Article  Google Scholar 

  50. Vollbrecht J, Brus V V, Ko S, et al. Quantifying the nongeminate recombination dynamics in nonfullerene bulk heterojunction organic solar cells. Adv Energy Mater, 2019, 9: 1901438

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zeng Liu or WeiHua Tang.

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2022YFB3605404), the National Natural Science Foundation of China (Grant No. 62204125), the Open Fund of Key Laboratory of Aerospace Information Materials and Physics (NUAA) MIIT, and the Natural Science Research Start-up Foundation of Recuring Talents of Nanjing University of Posts and Telecommunications (Grant Nos. XK1060921115, and XK1060921002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, G., Liu, Z., Tang, K. et al. High responsivity and fast response 8×8 β-Ga2O3 solar-blind ultraviolet imaging photodetector array. Sci. China Technol. Sci. 66, 3259–3266 (2023). https://doi.org/10.1007/s11431-022-2404-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2404-8

Navigation