Skip to main content
Log in

Characteristics and applications of interplanetary coronal mass ejection composition

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In situ measurements of interplanetary coronal mass ejection (ICME) composition, including elemental abundances and charge states of heavy ions, open a new avenue to study coronal mass ejections (CMEs) besides remote-sensing observations. The ratios between different elemental abundances can diagnose the plasma origin of CMEs (e.g., from the corona or chromosphere/photosphere) due to the first ionization potential (FIP) effect, which means elements with different FIPs get fractionated between the photosphere and corona. The ratios between different charge states of a specific element can provide the electron temperature of CMEs in the corona due to the freeze-in effect, which can be used to investigate their eruption process. In this review, we first give an overview of the ICME composition and then demonstrate their applications in investigating some important subjects related to CMEs, such as the origin of filament plasma and the eruption process of magnetic flux ropes. Finally, we point out several important questions that should be addressed further for better utilizing the ICME composition to study CMEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen P F. Coronal mass ejections: Models and their observational basis. Living Rev Sol Phys, 2011, 8: 1

    Google Scholar 

  2. Webb D F, Howard T A. Coronal mass ejections: Observations. Living Rev Sol Phys, 2012, 9: 3

    Google Scholar 

  3. Cheng X, Guo Y, Ding M D. Origin and structures of solar eruptions I: Magnetic flux rope. Sci China Earth Sci, 2017, 60: 1383–1407

    Google Scholar 

  4. Guo Y, Cheng X, Ding M D. Origin and structures of solar eruptions II: Magnetic modeling. Sci China Earth Sci, 2017, 60: 1408–1439

    Google Scholar 

  5. Gosling J T, McComas D J, Phillips J L, et al. Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections. J Geophys Res, 1991, 96: 7831–7839

    Google Scholar 

  6. Xu M, Shen C, Wang Y, et al. Importance of shock compression in enhancing ICME’s geoeffectiveness. Astrophys J, 2019, 884: L30

    Google Scholar 

  7. Cannon P S. Extreme space weather—A report published by the UK Royal Academy of Engineering. Space Weather, 2013, 11: 138–139

    Google Scholar 

  8. Riley P, Baker D, Liu Y D, et al. Extreme space weather events: From cradle to grave. Space Sci Rev, 2018, 214: 21

    Google Scholar 

  9. Lin J, Forbes T G. Effects of reconnection on the coronal mass ejection process. J Geophys Res, 2000, 105: 2375–2392

    Google Scholar 

  10. Patsourakos S, Vourlidas A, Stenborg G. Direct Evidence for a fast coronal mass ejection driven by the prior formation and subsequent destabilization of a magnetic flux rope. Astrophys J, 2013, 764: 125

    Google Scholar 

  11. Wang W, Liu R, Wang Y, et al. Buildup of a highly twisted magnetic flux rope during a solar eruption. Nat Commun, 2017, 8: 1330

    Google Scholar 

  12. Mikic Z, Linker J A. Disruption of coronal magnetic field arcades. Astrophys J, 1994, 430: 898

    Google Scholar 

  13. Song H Q, Zhang J, Chen Y, et al. Direct observations of magnetic flux rope formation during a solar coronal mass ejection. Astrophys J, 2014, 792: L40

    Google Scholar 

  14. Ouyang Y, Yang K, Chen P F. Is flux rope a necessary condition for the progenitor of coronal mass ejections? Astrophys J, 2015, 815: 72

    Google Scholar 

  15. Fan Y. The emergence of a twisted -tube into the solar atmosphere. Astrophys J, 2001, 554: L111–L114

    Google Scholar 

  16. Magara T. A model for dynamic evolution of emerging magnetic fields in the sun. Astrophys J, 2004, 605: 480–492

    Google Scholar 

  17. Leake J E, Linton M G, Török T. Simulations of emerging magnetic flux. I. The formation of stable coronal flux ropes. Astrophys J, 2013, 778: 99

    Google Scholar 

  18. Okamoto T J, Tsuneta S, Lites B W, et al. Emergence of a helical flux rope under an active region prominence. Astrophys J, 2008, 673: L215–L218

    Google Scholar 

  19. Manchester IV W, Gombosi T, DeZeeuw D, et al. Eruption of a buoyantly emerging magnetic flux rope. Astrophys J, 2004, 610: 588–596

    Google Scholar 

  20. Leake J E, Linton M G, Antiochos S K. Simulations of emerging magnetic flux. II. The formation of unstable coronal flux ropes and the initiation of coronal mass ejections. Astrophys J, 2014, 787: 46

    Google Scholar 

  21. Webb D F, Hundhausen A J. Activity associated with the solar origin of coronal mass ejections. Sol Phys, 1987, 108: 383–401

    Google Scholar 

  22. Gibson S E, Foster D, Burkepile J, et al. The calm before the storm: The link between quiescent cavities and coronal mass ejections. Astrophys J, 2006, 641: 590–605

    Google Scholar 

  23. Titov V S, Démoulin P. Basic topology of twisted magnetic configurations in solar flares. Astron Astrophys, 1999, 351: 707–720

    Google Scholar 

  24. Zhang J, Cheng X, Ding M. Observation of an evolving magnetic flux rope before and during a solar eruption. Nat Commun, 2012, 3: 747

    Google Scholar 

  25. Kippenhahn R, Schlüter A. Eine theorie der solaren filamente. Mit 7 textabbildungen. Zeitschrift Astrophys, 1957, 43: 36

    MATH  Google Scholar 

  26. Chen P F, Harra L K, Fang C. Imaging and spectroscopic observations of a filament channel and the implications for the nature of counter-streamings. Astrophys J, 2014, 784: 50

    Google Scholar 

  27. Liu R, Liu C, Wang S, et al. Sigmoid-to-flux-rope transition leading to a loop-like coronal mass ejection. Astrophys J, 2010, 725: L84–L90

    Google Scholar 

  28. Wang Y M, Stenborg G. Spinning motions in coronal cavities. Astrophys J, 2010, 719: L181–L184

    Google Scholar 

  29. Cheng X, Ding M D, Fang C. Imaging and spectroscopic diagnostics on the formation of two magnetic flux ropes revealed by SDO/AIA and IRIS. Astrophys J, 2015, 804: 82

    Google Scholar 

  30. Song H Q, Chen Y, Zhang J, et al. Evidence of the solar EUV hot channel as a magnetic flux rope from remote-sensing and in situ observations. Astrophys J, 2015, 808: L15

    Google Scholar 

  31. Song H Q, Chen Y, Li B, et al. The origin of solar filament plasma inferred from in situ observations of elemental abundances. Astrophys J, 2017, 836: L11

    Google Scholar 

  32. Song H Q, Zhong Z, Chen Y, et al. A statistical study of the average iron charge state distributions inside magnetic clouds for solar cycle 23. Astrophys J Suppl Ser, 2016, 224: 27

    Google Scholar 

  33. Ciaravella A, Raymond J C, Li J, et al. Elemental abundances and post-coronal mass ejection current sheet in a very hot active region. Astrophys J, 2002, 575: 1116–1130

    Google Scholar 

  34. Tian H, McIntosh S W, De Pontieu B, et al. Two components of the solar coronal emission revealed by extreme-ultraviolet spectroscopic observations. Astrophys J, 2011, 738: 18

    Google Scholar 

  35. Tian H, McIntosh S W, Xia L, et al. What can we learn about solar coronal mass ejections, coronal dimmings, and extreme-ultraviolet jets through spectroscopic Observations? Astrophys J, 2012, 748: 106

    Google Scholar 

  36. Cheng X, Zhang J, Saar S H, et al. Differential emission measure analysis of multiple structural components of coronal mass ejections in the inner corona. Astrophys J, 2012, 761: 62

    Google Scholar 

  37. Hayes A P, Vourlidas A, Howard R A. Deriving the electron density of the solar corona from the inversion of total brightness measurements. Astrophys J, 2001, 548: 1081–1086

    Google Scholar 

  38. Zurbuchen T H, Weberg M, von Steiger R, et al. Composition of coronal mass ejections. Astrophys J, 2016, 826: 10

    Google Scholar 

  39. Burlaga L, Sittler E, Mariani F, et al. Magnetic loop behind an interplanetary shock: Voyager, helios, and IMP 8 observations. J Geophys Res, 1981, 86: 6673–6684

    Google Scholar 

  40. Burlaga L F. Magnetic clouds and force-free fields with constant alpha. J Geophys Res, 1988, 93: 7217–7224

    Google Scholar 

  41. Liu Y, Luhmann J G, Huttunen K E J, et al. Reconstruction of the 2007 May 22 magnetic cloud: How much can we trust the flux-rope geometry of CMEs? Astrophys J, 2008, 677: L133–L136

    Google Scholar 

  42. Gloeckler G, Geiss J, Balsiger H, et al. The solar wind ion composition spectrometer. Astron Astrophys Suppl, 1992, 92: 267–289

    Google Scholar 

  43. Gloeckler G, Cain J, Ipavich F M, et al. Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Sci Rev, 1998, 86: 497–539

    Google Scholar 

  44. Gilbert J A, Lepri S T, Landi E, et al. First measurements of the complete heavy-ion charge state distributions of C, O, and Fe associated with interplanetary coronal mass ejections. Astrophys J, 2012, 751: 20

    Google Scholar 

  45. Gilbert J A, Gershman D J, Gloeckler G, et al. Invited article: Characterization of background sources in space-based time-of-flight mass spectrometers. Rev Sci Instruments, 2014, 85: 091301

    Google Scholar 

  46. Lepri S T, Zurbuchen T H, Fisk L A, et al. Iron charge distribution as an identifier of interplanetary coronal mass ejections. J Geophys Res, 2001, 106: 29231–29238

    Google Scholar 

  47. Shearer P, von Steiger R, Raines J M, et al. The solar wind neon abundance observed with ACE/SWICS and Ulysses/SWICS. Astrophys J, 2014, 789: 60

    Google Scholar 

  48. Wang J, Feng H, Zhao G. Cold prominence materials detected within magnetic clouds during 1998–2007. Astron Astrophys, 2018, 616: A41

    Google Scholar 

  49. Feng X, Yao S, Li D, et al. Statistical study of ICMEs with low mean carbon charge state plasmas detected from 1998 to 2011. Astrophys J, 2018, 868: 124

    Google Scholar 

  50. Li D, Yao S. Stronger southward magnetic field and geoeffectiveness of ICMEs containing prominence materials measured from 1998 to 2011. Astrophys J, 2020, 891: 79

    Google Scholar 

  51. Geiss J, Gloeckler G, Von Steiger R. Origin of the solar wind from composition data. Space Sci Rev, 1995, 72: 49–60

    Google Scholar 

  52. Chen Y, Esser R, Strachan L, et al. Stagnated outflow of O+5 ions in the source region of the slow solar wind at solar minimum. Astrophys J, 2004, 602: 415–421

    Google Scholar 

  53. Chen Y, Li X. An ion-cyclotron resonance-driven three-fluid model of the slow wind near the sun. Astrophys J, 2004, 609: L41–L44

    Google Scholar 

  54. Lepri S T, Landi E, Zurbuchen T H. Solar wind heavy ions over solar cycle 23: ACE/SWICS measurements. Astrophys J, 2013, 768: 94

    Google Scholar 

  55. Zhao L, Landi E, Zurbuchen T H, et al. The evolution of 1 AU equatorial solar wind and its association with the morphology of the heliospheric current sheet from solar cycles 23 to 24. Astrophys J, 2014, 793: 44

    Google Scholar 

  56. Zhao L, Landi E, Lepri S T, et al. An anomalous composition in slow solar wind as a signature of magnetic reconnection in its source region. Astrophys J Suppl Ser, 2017, 228: 4

    Google Scholar 

  57. Fu H, Madjarska M S, Xia L D, et al. Charge states and FIP bias of the solar wind from coronal holes, active regions, and quiet sun. Astrophys J, 2017, 836: 169

    Google Scholar 

  58. Fu H, Madjarska M S, Li B, et al. Helium abundance and speed difference between helium ions and protons in the solar wind from coronal holes, active regions, and quiet Sun. Mon Not R Astron Soc, 2018, 478: 1884–1892

    Google Scholar 

  59. Cane H V. Interplanetary coronal mass ejections in the near-Earth solar wind during 1996–2002. J Geophys Res, 2003, 108: 1156

    Google Scholar 

  60. Gopalswamy N. Properties of interplanetary coronal mass ejections. Space Sci Rev, 2007, 124: 145–168

    Google Scholar 

  61. Lepping R P, Wu C C, Berdichevsky D B, et al. Wind magnetic clouds for 2010–2012: Model parameter fittings, associated shock waves, and comparisons to earlier periods. Sol Phys, 2015, 290: 2265–2290

    Google Scholar 

  62. Wu C C, Lepping R P. Comparisons of characteristics of magnetic clouds and cloud-like structures during 1995–2012. Sol Phys, 2015, 290: 1243–1269

    Google Scholar 

  63. Chi Y, Shen C, Wang Y, et al. Statistical study of the interplanetary coronal mass ejections from 1995 to 2015. Sol Phys, 2016, 291: 2419–2439

    Google Scholar 

  64. Jian L K, Russell C T, Luhmann J G, et al. STEREO observations of interplanetary coronal mass ejections in 2007–2016. Astrophys J, 2018, 855: 114

    Google Scholar 

  65. Cargill P J. On the aerodynamic drag force acting on interplanetary coronal mass ejections. Sol Phys, 2004, 221: 135–149

    Google Scholar 

  66. Howard T A, Webb D F, Tappin S J, et al. Tracking halo coronal mass ejections from 0–1 AU and space weather forecasting using the solar mass ejection imager (SMEI). J Geophys Res, 2006, 111: A04105

    Google Scholar 

  67. Shen F, Feng X S, Wang Y, et al. Three-dimensional MHD simulation of two coronal mass ejections’ propagation and interaction using a successive magnetized plasma blobs model. J Geophys Res, 2011, 116: A09103

    Google Scholar 

  68. Liu Y D, Luhmann J G, Kajdic P, et al. Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nat Commun, 2014, 5: 3481

    Google Scholar 

  69. Hess P, Zhang J. Predicting CME ejecta and sheath front arrival at L1 with a data-constrained physical model. Astrophys J, 2015, 812: 144

    Google Scholar 

  70. Chen C, Liu Y D, Wang R, et al. Characteristics of a gradual filament eruption and subsequent CME propagation in relation to a strong geomagnetic storm. Astrophys J, 2019, 884: 90

    Google Scholar 

  71. Liu Y, Davies J A, Luhmann J G, et al. Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU. Astrophys J, 2010, 710: L82–L87

    Google Scholar 

  72. Gosling J T. Coronal mass ejections and magnetic flux ropes in interplanetary space. Washington DC American Geophysical Union Geophysical Monograph Series, 1990, 58: 343–364

    Google Scholar 

  73. Marubashi K. Physics of interplanetary magnetic flux ropes: Toward prediction of geomagnetic storms. Adv Space Res, 2000, 26: 55–66

    Google Scholar 

  74. Riley P, Schatzman C, Cane H V, et al. On the rates of coronal mass ejections: Remote solar and in situ observations. Astrophys J, 2006, 647: 648–653

    Google Scholar 

  75. Zurbuchen T H, Richardson I G. In–situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci Rev, 2006, 123: 31–43

    Google Scholar 

  76. Wu C C, Lepping R P. Statistical comparison of magnetic clouds with interplanetary coronal mass ejections for solar cycle 23. Sol Phys, 2011, 269: 141–153

    Google Scholar 

  77. Richardson I G, Cane H V. Regions of abnormally low proton temperature in the solar wind (1965–1991) and their association with ejecta. J Geophys Res, 1995, 100: 23397–23412

    Google Scholar 

  78. Liu Y, Richardson J D, Belcher J W. A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4 AU. Planet Space Sci, 2005, 53: 3–17

    Google Scholar 

  79. Laming J M. Non-Wkb models of the first ionization potential effect: Implications for solar coronal heating and the coronal helium and neon abundances. Astrophys J, 2009, 695: 954–969

    Google Scholar 

  80. Geiss J. Processes affecting abundances in the solar wind. Space Sci Rev, 1982, 33: 201–217

    Google Scholar 

  81. Laming J M. A unified picture of the first ionization potential and inverse first ionization potential effects. Astrophys J, 2004, 614: 1063–1072

    Google Scholar 

  82. Laming J M. The FIP and inverse FIP effects in solar and stellar coronae. Living Rev Sol Phys, 2015, 12: 2

    Google Scholar 

  83. Lundin R, Guglielmi A. Ponderomotive forces in cosmos. Space Sci Rev, 2007, 127: 1–116

    Google Scholar 

  84. Bochsler P. Minor ions in the solar wind. Astron Astrophys Rev, 2007, 14: 1–40

    Google Scholar 

  85. Feldman U, Schuhle U, Widing K G, et al. Coronal composition above the solar equator and the north pole as determined from spectra acquired by the SUMER Instrument on SOHO. Astrophys J, 1998, 999: 505

    Google Scholar 

  86. Zhao L, Landi E, Lepri S T, et al. On the relation between the in situ properties and the coronal sources of the solar wind. Astrophys J, 2017, 846: 135

    Google Scholar 

  87. Reames D V, Meyer J P, von Rosenvinge T T. Energetic-particle abundances in impulsive solar flare events. Astrophys J Suppl Ser, 1994, 90: 649

    Google Scholar 

  88. Drake J F, Cassak P A, Shay M A, et al. A magnetic reconnection mechanism for ion acceleration and abundance enhancements in impulsive flares. Astrophys J, 2009, 700: L16–L20

    Google Scholar 

  89. Widing K G, Feldman U. On the rate of abundance modifications versus time in active region plasmas. Astrophys J, 2001, 555: 426–434

    Google Scholar 

  90. Reisenfeld D B, Burnett D S, Becker R H, et al. Elemental abundances of the bulk solar wind: Analyses from genesis and ACE. Space Sci Rev, 2007, 130: 79–86

    Google Scholar 

  91. von Steiger R, Zurbuchen T H, McComas D J. Oxygen flux in the solar wind: Ulysses observations. Geophys Res Lett, 2010, 37: L22101

    Google Scholar 

  92. Bochsler P, Ipavich F M, Paquette J A, et al. Determination of the abundance of aluminum in the solar wind with SOHO/CELIAS/MTOF. J Geophys Res, 2000, 105: 12659–12666

    Google Scholar 

  93. Owens M J. Solar wind and heavy ion properties of interplanetary coronal mass ejections. Sol Phys, 2018, 293: 122

    Google Scholar 

  94. Giammanco C, Wurz P, Karrer R. Minor ion abundances in the slow solar wind. Astrophys J, 2008, 681: 1703–1707

    Google Scholar 

  95. Hovestadt D, Hilchenbach M, Buergi A, et al. CELIAS-charge, element and isotope analysis system for SOHO. Sol Phys, 1995, 162: 441–481

    Google Scholar 

  96. Gopalswamy N, Shimojo M, Lu W, et al. Prominence eruptions and coronal mass ejection: A statistical study using microwave observations. Astrophys J, 2003, 586: 562–578

    Google Scholar 

  97. Spicer D S, Feldman U, Widing K G, et al. The neon-to-magnesium abundance ratio as a tracer of the source region of prominence material. Astrophys J, 1998, 494: 450–452

    Google Scholar 

  98. Mackay D H, Karpen J T, Ballester J L, et al. Physics of solar prominences: II-magnetic structure and dynamics. Space Sci Rev, 2010, 151: 333–399

    Google Scholar 

  99. Sakai J, Colin A, Priest E. Dynamical model of prominence formation and oscillation-Part one. Sol Phys, 1987, 114: 253–271

    Google Scholar 

  100. Démoulin P. Filament formation. Adv Space Res, 1993, 13: 95–104

    Google Scholar 

  101. Parenti S, Del Zanna G, Vial J C. Elemental composition in quiescent prominences. Astron Astrophys, 2019, 625: A52

    Google Scholar 

  102. Lepri S T, Zurbuchen T H. Direct observational evidence of filament material within interplanetary coronal mass ejections. Astrophys J, 2010, 723: L22–L27

    Google Scholar 

  103. Gruesbeck J R, Lepri S T, Zurbuchen T H. Two-plasma model for low charge state interplanetary coronal mass ejection observations. Astrophys J, 2012, 760: 141

    Google Scholar 

  104. Skoug R M, Bame S J, Feldman W C, et al. A prolonged He+ enhancement within a coronal mass ejection in the solar wind. Geophys Res Lett, 1999, 26: 161–164

    Google Scholar 

  105. Gloeckler G, Fisk L A, Hefti S, et al. Unusual composition of the solar wind in the 2–3 May 1998 CME observed with SWICS on ACE. Geophys Res Lett, 1999, 26: 157–160

    Google Scholar 

  106. Yao S, Marsch E, Tu C Y, et al. Identification of prominence ejecta by the proton distribution function and magnetic fine structure in interplanetary coronal mass ejections in the inner heliosphere. J Geophys Res, 2010, 115: A05103

    Google Scholar 

  107. Wang Y, Zhuang B, Hu Q, et al. On the twists of interplanetary magnetic flux ropes observed at 1 AU. J Geophys Res Space Phys, 2016, 121: 9316–9339

    Google Scholar 

  108. Asplund M, Grevesse N, Sauval A J, et al. The chemical composition of the sun. Annu Rev Astron Astrophys, 2009, 47: 481–522

    Google Scholar 

  109. Wang J, Yan X, Qu Z, et al. Formation of an active region filament driven by a series of jets. Astrophys J, 2018, 863: 180

    Google Scholar 

  110. Owocki S P, Holzer T E, Hundhausen A J. The solar wind ionization state as a coronal temperature diagnostic. Astrophys J, 1983, 275: 354–366

    Google Scholar 

  111. Chen Y, Esser R, Hu Y. Formation of minor-ion charge states in the fast solar wind: Roles of differential flow speeds of ions of the same element. Astrophys J, 2003, 582: 467–474

    Google Scholar 

  112. Landi E, Gruesbeck J R, Lepri S T, et al. Charge state evolution in the solar wind. II. Plasma charge state composition in the inner corona and accelerating fast solar wind. Astrophys J, 2012, 761: 48

    Google Scholar 

  113. Buergi A, Geiss J. Helium and minor ions in the corona and solar wind-dynamics and charge states. Sol Phys, 1986, 103: 347–383

    Google Scholar 

  114. Boe B, Habbal S, Druckmüller M, et al. The first empirical determination of the Fe10+ and Fe13+ freeze-in distances in the solar corona. Astrophys J, 2018, 859: 155

    Google Scholar 

  115. Henke T, Woch J, Mall U, et al. Differences in the O7+/O6+ ratio of magnetic cloud and non-cloud coronal mass ejections. Geophys Res Lett, 1998, 25: 3465–3468

    Google Scholar 

  116. Zhao L, Allen R M, Zheng T, et al. Reactivation of an Archean craton: Constraints from P- and S-wave tomography in North China. Geophys Res Lett, 2009, 36: L17306

    Google Scholar 

  117. Lepri S T. Iron charge state distributions as an indicator of hot ICMEs: Possible sources and temporal and spatial variations during solar maximum. J Geophys Res, 2004, 109: A01112

    Google Scholar 

  118. Kocher M, Lepri S T, Landi E, et al. Anatomy of depleted interplanetary coronal mass ejections. Astrophys J, 2017, 834: 147

    Google Scholar 

  119. Lynch B J. Internal structure of magnetic clouds: Plasma and composition. J Geophys Res, 2003, 108: 1239

    Google Scholar 

  120. Huang J, Liu Y, Feng H, et al. A statistical study of the plasma and composition distribution inside magnetic clouds: 1998–2011. Astrophys J, 2020, 893: 136

    Google Scholar 

  121. Gruesbeck J R, Lepri S T, Zurbuchen T H, et al. Constraints on coronal mass ejection evolution from in situ observations of ionic charge states. Astrophys J, 2011, 730: 103

    Google Scholar 

  122. Lepri S T, Laming J M, Rakowski C E, et al. Spatially dependent heating and ionization in an ICME observed by both ACE and ulysses. Astrophys J, 2012, 760: 105

    Google Scholar 

  123. Arnaud M, Raymond J. Iron ionization and recombination rates and ionization equilibrium. Astrophys J, 1992, 398: 394

    Google Scholar 

  124. Reinard A A, Zurbuchen T H, Fisk L A, et al. Comparison between average charge states and abundances of ions in CMEs and the slow solar wind. In: Wimmer-Schweingruber R F, ed. Joint SOHO/ACE workshop “Solar and Galactic Composition”, volume 598 of American Institute of Physics Conference Series. 2001. 139–144

  125. Reinard A. Comparison of interplanetary CME charge state composition with CME-associated flare magnitude. Astrophys J, 2005, 620: 501–505

    Google Scholar 

  126. Forbes T G, Acton L W. Reconnection and field line shrinkage in solar flares. Astrophys J, 1996, 459: 330

    Google Scholar 

  127. Ciaravella A, Webb D F, Giordano S, et al. Bright ray-like features in the aftermath of coronal mass ejections: White light versus ultraviolet spectra. Astrophys J, 2013, 766: 65

    Google Scholar 

  128. Rakowski C E, Laming J M, Lepri S T. Ion charge states in halo coronal mass ejections: What can we learn about the explosion? Astrophys J, 2007, 667: 602–609

    Google Scholar 

  129. Ko Y K, Raymond J C, Vršnak B, et al. Modeling UV and X-ray emission in a post-coronal mass ejection current sheet. Astrophys J, 2010, 722: 625–641

    Google Scholar 

  130. Rust D M, Kumar A. Helical magnetic fields in filaments. Sol Phys, 1994, 155: 69–97

    Google Scholar 

  131. Hu Q, Zheng J, Chen Y, et al. Automated detection of small-scale magnetic flux ropes in the solar wind: First results from the wind spacecraft measurements. Astrophys J Suppl Ser, 2018, 239: 12

    Google Scholar 

  132. Feng H Q, Zhao G Q, Wang J M. Small interplanetary magnetic flux rope. Sci China Tech Sci, 2020, 63: 183–194

    Google Scholar 

  133. Huang J, Liu Y C M, Peng J, et al. The distributions of iron average charge states in small flux ropes in interplanetary space: Clues to their twisted structures. J Geophys Res Space Phys, 2018, 123: 7167–7180

    Google Scholar 

  134. Lynch B J, Reinard A A, Mulligan T, et al. Ionic composition structure of coronal mass ejections in axisymmetric magnetohydro-dynamic models. Astrophys J, 2011, 740: 112

    Google Scholar 

  135. Shen C, Reeves K K, Raymond J C, et al. Non-equilibrium Ionization modeling of the current sheet in a simulated solar eruption. Astrophys J, 2013, 773: 110

    Google Scholar 

  136. Reeves K K, Linker J A, Mikić Z, et al. Current sheet energetics, flare emissions, and energy partition in a simulated solar eruption. Astrophys J, 2010, 721: 1547–1558

    Google Scholar 

  137. Hu Q, Sonnerup B U O. Reconstruction of magnetic clouds in the solar wind: Orientations and configurations. J Geophys Res, 2002, 107: 1142

    Google Scholar 

  138. Hu Q. The Grad-Shafranov reconstruction in twenty years: 1996–2016. Sci China Earth Sci, 2017, 60: 1466–1494

    Google Scholar 

  139. Lepping R P, Jones J A, Burlaga L F. Magnetic field structure of interplanetary magnetic clouds at 1 AU. J Geophys Res, 1990, 95: 11957–11965

    Google Scholar 

  140. Wang Y, Zhou Z, Shen C, et al. Investigating plasma motion of magnetic clouds at 1 AU through a velocity-modified cylindrical force-free flux rope model. J Geophys Res Space Phys, 2015, 120: 1543–1565

    Google Scholar 

  141. Kumar A, Rust D M. Interplanetary magnetic clouds, helicity conservation, and current-core flux-ropes. J Geophys Res, 1996, 101: 15667–15684

    Google Scholar 

  142. Lepping R P, Wu C C, Berdichevsky D B. Yearly comparison of magnetic cloud parameters, sunspot number, and interplanetary quantities for the first 18 years of the wind mission. Sol Phys, 2015, 290: 553–578

    Google Scholar 

  143. Ruffenach A, Lavraud B, Owens M J, et al. Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation. J Geophys Res, 2012, 117: A09101

    Google Scholar 

  144. Manchester W Iv, Kilpua E K J, Liu Y D, et al. The physical processes of CME/ICME evolution. Space Sci Rev, 2017, 212: 1159–1219

    Google Scholar 

  145. Fox N J, Velli M C, Bale S D, et al. The solar probe plus mission: Humanity’s first visit to our star. Space Sci Rev, 2016, 204: 7–48

    Google Scholar 

  146. Müller D, Marsden R G, St. Cyr O C, et al. Solar orbiter. Exploring the sun-heliosphere connection. Sol Phys, 2013, 285: 25–70

    Google Scholar 

  147. Gan W Q, Zhu C, Deng Y Y, et al. Advanced space-based solar observatory (ASO-S): An overview. Res Astron Astrophys, 2019, 19: 156

    Google Scholar 

  148. Gan W, Yan Y, Huang Y. Prospect for space solar physics in 2016–2030 (in Chinese). Sci Sin-Phys Mech Astron, 2019, 49: 059602

    Google Scholar 

  149. Xiong M, Liu Y, Liu H, et al. Overview of the solar polar orbit telescope project for space weather mission. Chin J Spac Sci, 2016, 36: 245–266

    Google Scholar 

  150. Lavraud B, Liu Y, Segura K, et al. A small mission concept to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science. J Atmos Sol-Terrestrial Phys, 2016, 146: 171–185

    Google Scholar 

  151. Lin J, Wang M, Tian H, et al. In situmeasurements of the solar eruption (in Chinese). Sci Sin-Phys Mech Astron, 2019, 49: 059607

    Google Scholar 

  152. Wang Y M, Ji H S, Wang Y M, et al. Concept of the solar ring mission: Overview. Sci China Tech Sci, 2020, https://doi.org/10.1007/s11431-020-1603-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongQiang Song.

Additional information

This work was supported by the Shandong Provincial Natural Science Foundation (Grant No. JQ201710), the National Natural Science Foundation of China (Grant Nos. U1731102, U1731101, 11790303, and 11790300), and the Chinese Academy of Sciences (Grant No. XDA-17040507). SONG Hongqiang thanks Prof. TIAN Hui and Dr. ZHAO Liang for their helpful suggestions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Yao, S. Characteristics and applications of interplanetary coronal mass ejection composition. Sci. China Technol. Sci. 63, 2171–2187 (2020). https://doi.org/10.1007/s11431-020-1680-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1680-y

Keywords

Navigation