Skip to main content
Log in

Helium Abundance Variations in Interplanetary Coronal Mass Ejections

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

Based on the OMNI2 database for the period from 1976 to 2019, the behavior of the relative abundance of helium ions Nα/Np is investigated inside interplanetary coronal mass ejections (ICMEs). It is shown that the previously discovered anticorrelation between Nα/Np and the parameter β inside ICMEs is due to the dependence on magnetic pressure (or the magnitude of the interplanetary magnetic field), while the dependence of Nα/Np on the magnitude of the thermal pressure weakly falling in a magnetic cloud and increases in EJECTA. The data obtained are consistent with the previously suggested hypothesis that an electric current enriched with helium ions flows inside an ICME [13].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Yermolaev, Yu.I., Lodkina, I.G., Nikolaeva, N.S., et al., Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res., 2015, vol. 120, pp. 7094–7106. https://doi.org/10.1002/2015JA021274

    Article  Google Scholar 

  2. Yermolaev, Yu.I., Estimation of the size of an electric current with high helium abundance inside a magnetic cloud, Cosmic Res., 2019, vol. 57, no. 6, pp. 471–472.

    Article  ADS  Google Scholar 

  3. Yermolaev, Yu.I., Lodkina, I.G., Yermolaev, M.Yu., et al., Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis: 4. Helium abundance, J. Geophys. Res., 2020, vol. 125, no. 7, id. e2020JA027878. https://doi.org/10.1029/2020JA027878

  4. Zurbuchen, T.H. and Richardson, I.G., In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections, Space Sci. Rev., 2006, vol. 123, pp. 31–43. https://doi.org/10.1007/s11214-006-9010-4

    Article  ADS  Google Scholar 

  5. Wu, C.-C. and Lepping, R.P., Comparisons of characteristics of magnetic clouds and cloud-like structures during 1995–2012, Sol. Phys., 2015, vol. 290, pp. 1243–1269. https://doi.org/10.1007/s11207-015-0656-5

    Article  ADS  Google Scholar 

  6. Jian, L.K., Russell, C.T., Luhmann, J.G., et al., Properties of interplanetary coronal mass ejections at one AU during 1995–2004, Sol. Phys., 2006, vol. 239, pp. 393–436.

    Article  ADS  Google Scholar 

  7. Yermolaev, Yu.I., Lodkina, I.G., Nikolaeva, N.S., et al., Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis: 2. Comparisons of CIRs vs. SHEATHs and MCs vs. EJECTA, Sol. Phys., 2017, vol. 292, p. 193.

    Article  ADS  Google Scholar 

  8. Yermolaev, Yu.I., Where are medium-scale solar-wind variations formed?, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 2, pp. 162–163.

  9. Zelenyi, L.M. and Milovanov, A.V., Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics, Phys.-Usp., 2004, vol. 47, no. 8, pp. 749–788.

    Article  Google Scholar 

  10. Geiss, J., Processes affecting abundances in the solar wind, Space Sci. Rev., 1982, vol. 33, p. 201.

    Article  ADS  Google Scholar 

  11. Ermolaev, Yu.I., Observation of He++ ions in the solar wind, Cosmic Res., 1994, vol. 32, no. 1, p. 71.

    Google Scholar 

  12. Geiss, J., Gloeckler, G., and Von Steiger, R., Origin of the solar wind from composition data, Space Sci. Rev., 1995, vol. 72, nos. 1–2, pp. 49–60.

    Article  ADS  Google Scholar 

  13. Zurbuchen, T.H., Weberg, M., Von Steiger, R., et al., Composition of coronal mass ejections, Astrophys. J., 2016, vol. 826, no. 1, p. 10. https://doi.org/10.3847/0004-637X/826/1/10

    Article  ADS  Google Scholar 

  14. King, J.H. and Papitashvili, N.E., Solar wind spatial scales in and comparisons of hourly wind and ace plasma and magnetic field data, J. Geophys. Res., 2004, vol. 110, no. A2, p. A02209.

    Google Scholar 

  15. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., et al., Catalog of large-scale solar wind phenomena during 1976–2000, Cosmic Res., 2009, vol. 47, no. 2, pp. 81–94.

    Article  ADS  Google Scholar 

  16. Bendat, J.S. and Piersol, A.G., Measurement and Analysis of Random Data, New York: Wiley-Interscience, 1971.

    MATH  Google Scholar 

  17. Wang, Y.-M., Relating the solar wind helium abundance to the coronal magnetic field, Astrophys. J., 2008, vol. 683, pp. 499–509. https://doi.org/10.1086/589766

    Article  ADS  Google Scholar 

  18. Wang, Y.-M., Role of the coronal Alfvén speed in modulating the solar-wind helium abundance, Astrophys. J. Lett., 2016, vol. 833, id. L21. https://doi.org/10.3847/2041-8213/833/2/L21

Download references

ACKNOWLEDGMENTS

The authors are grateful to the developers of the OMNI database (http://omniweb.gsfc.nasa.gov) for the opportunity to use it in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Khokhlachev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khokhlachev, A.A., Yermolaev, Y.I., Lodkina, I.G. et al. Helium Abundance Variations in Interplanetary Coronal Mass Ejections. Cosmic Res 60, 67–72 (2022). https://doi.org/10.1134/S0010952522020046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952522020046

Navigation