Skip to main content
Log in

High strength and high conductivity Cu alloys: A review

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

High strength and high conductivity (HSHC) Cu alloys are widely used in many fields, such as high-speed electric railway contact wires and integrated circuit lead frames. Pure Cu is well known to have excellent electrical conductivity but rather low strength. The main concern of HSHC Cu alloys is how to strengthen the alloy efficiently. However, when the Cu alloys are strengthened by a certain method, their electrical conductivity will inevitably decrease to a certain extent. This review introduces the strengthening methods of HSHC Cu alloys. Then the research progress of some typical HSHC Cu alloys such as Cu-Cr-Zr, Cu-Ni-Si, Cu-Ag, Cu-Mg is reviewed according to different alloy systems. Finally, the development trend of HSHC Cu alloys is forecasted. It is pointed out that precipitation and micro-alloying are effective ways to improve the performance of HSHC Cu alloys. At the same time, the production of HSHC Cu alloys also needs to comply with the large-scale, low-cost development trend of industrialization in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu L, Shen Y, Chen X, et al. Ultrahigh strength and high electrical conductivity in copper. Science, 2004, 304: 422–426

    Article  Google Scholar 

  2. Zhao Z, Zhang Y, Tian B, et al. Co effects on Cu-Ni-Si alloys microstructure and physical properties. J Alloys Compd, 2019, 797: 1327–1337

    Article  Google Scholar 

  3. Guo X, Xiao Z, Qiu W, et al. Microstructure and properties of Cu-Cr-Nb alloy with high strength, high electrical conductivity and good softening resistance performance at elevated temperature. Mater Sci Eng A, 2019, 749: 281–290

    Article  Google Scholar 

  4. Li R, Zhang S, Zou C, et al. The roles of Hf element in optimizing strength, ductility and electrical conductivity of copper alloys. Mater Sci Eng-A, 2019, 758: 130–138

    Article  Google Scholar 

  5. Zhou S J, Zhao B J, Zhao Z, et al. Application of lanthanum in high strength and high conductivity copper alloys. J Rare Earths, 2006, 24: 385–388

    Article  Google Scholar 

  6. Rupert T J, Trenkle J C, Schuh C A. Enhanced solid solution effects on the strength of nanocrystalline alloys. Acta Mater, 2011, 59: 1619–1631

    Article  Google Scholar 

  7. Batra I S, Dey G K, Kulkarni U D, et al. Microstructure and properties of a Cu-Cr-Zr alloy. J Nucl Mater, 2001, 299: 91–100

    Article  Google Scholar 

  8. Liu Q, Cheng L. Structural evolution and electronic properties of Cu-Zn alloy clusters. J Alloys Compd, 2019, 771: 762–768

    Article  Google Scholar 

  9. Hall E O. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc London Sect B, 1951, 64: 747

    Article  Google Scholar 

  10. Petch N J. The cleavage strength of polycrystals. J Iron Steel Inst, 1953, 174: 25–28

    Google Scholar 

  11. Liu W, Yan N, Wang H P. Dendritic morphology evolution and microhardness enhancement of rapidly solidified Ni-based superalloys. Sci China Tech Sci, 2019, 62: 1976–1986

    Article  Google Scholar 

  12. Li R, Guo E, Chen Z, et al. Optimization of the balance between high strength and high electrical conductivity in CuCrZr alloys through two-step cryorolling and aging. J Alloys Compd, 2019, 771: 1044–1051

    Article  Google Scholar 

  13. Zhang M, Liu G Q, Wang H, et al. Stability of γ′ multimodal microstructure in a Ni-based powder metallurgy superalloy. Sci China Tech Sci, 2018, 61: 1824–1828

    Article  Google Scholar 

  14. Purcek G, Yanar H, Demirtas M, et al. Microstructural, mechanical and tribological properties of ultrafine-grained Cu-Cr-Zr alloy processed by high pressure torsion. J Alloys Compd, 2020, 816: 152675

    Article  Google Scholar 

  15. Misra R D K, Prasad V S, Rao P R. Dynamic embrittlement in an age-hardenable copper-chromium alloy. Scripta Mater, 1996, 35: 129–133

    Article  Google Scholar 

  16. Batawi E, Morris D G, Morris M A. Effect of small alloying additions on behaviour of rapidly solidified CuCr alloys. Met Sci J, 1990, 6: 892–899

    Google Scholar 

  17. Kuznetsov G, Fedorov V, Rodnyanskaya A. Phase diagram of the Cu-Cr system. Izv VUZ Tsvetn Metall, 1977, 3: 84–86

    Google Scholar 

  18. Hatakeyama M, Toyama T, Nagai Y, et al. Nanostructural evolution of Cr-rich precipitates in a Cu-Cr-Zr alloy during heat treatment studied by 3 dimensional atom probe. Mater Trans, 2008, 49: 518–521

    Article  Google Scholar 

  19. Zhang S, Li R, Kang H, et al. A high strength and high electrical conductivity Cu-Cr-Zr alloy fabricated by cryorolling and intermediate aging treatment. Mater Sci Eng-A, 2017, 680: 108–114

    Article  Google Scholar 

  20. Holzwarth U, Stamm H. The precipitation behaviour of ITER-grade Cu-Cr-Zr alloy after simulating the thermal cycle of hot isostatic pressing. J Nucl Mater, 2000, 279: 31–45

    Article  Google Scholar 

  21. Huang F, Ma J, Ning H, et al. Analysis of phases in a Cu-Cr-Zr alloy. Scripta Mater, 2003, 48: 97–102

    Article  Google Scholar 

  22. Kermajani M, Raygan S, Hanayi K, et al. Influence of thermomechanical treatment on microstructure and properties of electroslag remelted Cu-Cr-Zr alloy. Mater Des, 2013, 51: 688–694

    Article  Google Scholar 

  23. Xia C, Jia Y, Zhang W, et al. Study of deformation and aging behaviors of a hot rolled-quenched Cu-Cr-Zr-Mg-Si alloy during thermomechanical treatments. Mater Des, 2012, 39: 404–409

    Article  Google Scholar 

  24. Fu H, Xu S, Li W, et al. Effect of rolling and aging processes on microstructure and properties of Cu-Cr-Zr alloy. Mater Sci Eng-A, 2017, 700: 107–115

    Article  Google Scholar 

  25. Sun L X, Tao N R, Lu K. A high strength and high electrical conductivity bulk CuCrZr alloy with nanotwins. Scripta Mater, 2015, 99: 73–76

    Article  Google Scholar 

  26. Li R, Kang H, Chen Z, et al. A promising structure for fabricating high strength and high electrical conductivity copper alloys. Sci Rep, 2016, 6: 20799

    Article  Google Scholar 

  27. Mishnev R, Shakhova I, Belyakov A, et al. Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu-Cr-Zr alloy. Mater Sci Eng-A, 2015, 629: 29–40

    Article  Google Scholar 

  28. Morozova A, Kaibyshev R. Grain refinement and strengthening of a Cu-0.1Cr-0.06Zr alloy subjected to equal channel angular pressing. Philos Mag, 2017, 97: 2053–2076

    Article  Google Scholar 

  29. Purcek G, Yanar H, Demirtas M, et al. Optimization of strength, ductility and electrical conductivity of Cu-Cr-Zr alloy by combining multi-route ECAP and aging. Mater Sci Eng-A, 2016, 649: 114–122

    Article  Google Scholar 

  30. Liang N, Liu J, Lin S, et al. A multiscale architectured CuCrZr alloy with high strength, electrical conductivity and thermal stability. J Alloys Compd, 2018, 735: 1389–1394

    Article  Google Scholar 

  31. Zhang Y, Tian B, Volinsky A A, et al. Microstructure and precipitate’s characterization of the Cu-Ni-Si-P alloy. J Materi Eng Perform, 2016, 25: 1336–1341

    Article  Google Scholar 

  32. Liu J, Hou M, Yang H, et al. In-situ TEM study of the dynamic interactions between dislocations and precipitates in a Cu-Cr-Zr alloy. J Alloys Compd, 2018, 765: 560–568

    Article  Google Scholar 

  33. Shangina D V, Bochvar N R, Morozova A I, et al. Effect of chromium and zirconium content on structure, strength and electrical conductivity of Cu-Cr-Zr alloys after high pressure torsion. Mater Lett, 2017, 199: 46–49

    Article  Google Scholar 

  34. Wang Y, Fu R, Li Y, et al. A high strength and high electrical conductivity Cu-Cr-Zr alloy fabricated by cryogenic friction stir processing and subsequent annealing treatment. Mater Sci Eng-A, 2019, 755: 166–169

    Article  Google Scholar 

  35. Huang A H, Wang Y F, Wang M S, et al. Optimizing the strength, ductility and electrical conductivity of a Cu-Cr-Zr alloy by rotary swaging and aging treatment. Mater Sci Eng-A, 2019, 746: 211–216

    Article  Google Scholar 

  36. Corson M. Copper alloy systems with variable alpha range and their use in the hardening of copper. AIME Trans, 1927, E27: 435–450

    Google Scholar 

  37. Robertson W, Grenier E, Nole V. The structure and associated properties of an age hardening Cu alloy. Trans Metall Soc AIME, 1961, 221: 503

    Google Scholar 

  38. Donoso E, Espinoza R, Diánez M J, et al. Microcalorimetric study of the annealing hardening mechanism of a Cu-2.8Ni-1.4Si (at%) alloy. Mater Sci Eng-A, 2012, 556: 612–616

    Article  Google Scholar 

  39. Jia Y, Wang M, Chen C, et al. Orientation and diffraction patterns of δ-Ni2Si precipitates in Cu-Ni-Si alloy. J Alloys Compd, 2013, 557: 147–151

    Article  Google Scholar 

  40. Hu T, Chen J H, Liu J Z, et al. The crystallographic and morphological evolution of the strengthening precipitates in Cu-Ni-Si alloys. Acta Mater, 2013, 61: 1210–1219

    Article  Google Scholar 

  41. Azzeddine H, Mehdi B, Hennet L, et al. An in situ synchrotron X-ray diffraction study of precipitation kinetics in a severely deformed Cu-Ni-Si alloy. Mater Sci Eng-A, 2014, 597: 288–294

    Article  Google Scholar 

  42. Okamoto M. The investigation of the equilibrium state of the ternary whole system copper-nickel-silicon. III. J Jpn Inst Met, 1939, 3: 365–402

    Article  Google Scholar 

  43. Zhao D M, Dong Q M, Liu P, et al. Structure and strength of the age hardened Cu-Ni-Si alloy. Mater Chem Phys, 2003, 79: 81–86

    Article  Google Scholar 

  44. Cheng J Y, Tang B B, Yu F X, et al. Evaluation of nanoscaled precipitates in a Cu-Ni-Si-Cr alloy during aging. J Alloys Compd, 2014, 614: 189–195

    Article  Google Scholar 

  45. Lei Q, Li Z, Dai C, et al. Effect of aluminum on microstructure and property of Cu-Ni-Si alloys. Mater Sci Eng-A, 2013, 572: 65–74

    Article  Google Scholar 

  46. Monzen R, Watanabe C. Microstructure and mechanical properties of Cu-Ni-Si alloys. Mater Sci Eng-A, 2008, 483–484: 117–119

    Article  Google Scholar 

  47. Li M, Zinkle S J. Physical and mechanical properties of copper and copper alloys. Compr Nucl Mater, 2012, 4: 667–690

    Article  Google Scholar 

  48. Kuhn H A. Properties of high performance alloys for electromechanical connectors. In: Cu Alloys-Early Applications and Current Performance-Enhancing Processes. InTech., 2012. 51–68

  49. Watanabe C, Takeshita S, Monzen R. Effects of small addition of Ti on strength and microstructure of a Cu-Ni-Si alloy. Metall Mat Trans A, 2015, 46: 2469–2475

    Article  Google Scholar 

  50. Han S Z, Gu J H, Lee J H, et al. Effect of V addition on hardness and electrical conductivity in Cu-Ni-Si alloys. Met Mater Int, 2013, 19: 637–641

    Article  Google Scholar 

  51. Wang W, Kang H, Chen Z, et al. Effects of Cr and Zr additions on microstructure and properties of Cu-Ni-Si alloys. Mater Sci Eng-A, 2016, 673: 378–390

    Article  Google Scholar 

  52. Khereddine A Y, Larbi F H, Kawasaki M, et al. An examination of microstructural evolution in a Cu-Ni-Si alloy processed by HPT and ECAP. Mater Sci Eng-A, 2013, 576: 149–155

    Article  Google Scholar 

  53. Li D, Wang Q, Jiang B, et al. Minor-alloyed Cu-Ni-Si alloys with high hardness and electric conductivity designed by a cluster formula approach. Prog Nat Sci-Mater Int, 2017, 27: 467–473

    Article  Google Scholar 

  54. Lei Q, Li Z, Xiao T, et al. A new ultrahigh strength Cu-Ni-Si alloy. Intermetallics, 2013, 42: 77–84

    Article  Google Scholar 

  55. Lei Q, Xiao Z, Hu W, et al. Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy. Mater Sci Eng-A, 2017, 697: 37–47

    Article  Google Scholar 

  56. Wang H S, Chen H G, Gu J W, et al. Effects of heat treatment processes on the microstructures and properties of powder metallurgy produced Cu-Ni-Si-Cr alloy. Mater Sci Eng-A, 2014, 619: 221–227

    Article  Google Scholar 

  57. Gholami M, Vesely J, Altenberger I, et al. Effects of microstructure on mechanical properties of CuNiSi alloys. J Alloys Compd, 2017, 696: 201–212

    Article  Google Scholar 

  58. Watanabe H, Kunimine T, Watanabe C, et al. Tensile deformation characteristics of a Cu-Ni-Si alloy containing trace elements processed by high-pressure torsion with subsequent aging. Mater Sci Eng-A, 2018, 730: 10–15

    Article  Google Scholar 

  59. Liao W, Liu X, Yang Y, et al. Effect of cold rolling reduction rate on mechanical properties and electrical conductivity of Cu-Ni-Si alloy prepared by temperature controlled mold continuous casting. Mater Sci Eng-A, 2019, 763: 138068

    Article  Google Scholar 

  60. Huang J, Xiao Z, Dai J, et al. Microstructure and properties of a novel Cu-Ni-Co-Si-Mg alloy with super-high strength and conductivity. Mater Sci Eng-A, 2019, 744: 754–763

    Article  Google Scholar 

  61. Freudenberger J, Grünberger W, Botcharova E, et al. Mechanical properties of Cu-based micro- and macrocomposites. Adv Eng Mater, 2002, 4: 677–681

    Article  Google Scholar 

  62. Benghalem A, Morris D G. Microstructure and strength of wiredrawn Cu-Ag filamentary composites. Acta Mater, 1997, 45: 397–406

    Article  Google Scholar 

  63. Tian Y Z, Zhang Z F. Stability of interfaces in a multilayered Ag-Cu composite during cold rolling. Scripta Mater, 2013, 68: 542–545

    Article  Google Scholar 

  64. Sakai Y, Schneider-Muntau H J. Ultra-high strength, high conductivity Cu-Ag alloy wires. Acta Mater, 1997, 45: 1017–1023

    Article  Google Scholar 

  65. Sakai Y, Inoue K, Asano T, et al. Development of high-strength, high-conductivity Cu-Ag alloys for high-field pulsed magnet use. Appl Phys Lett, 1991, 59: 2965–2967

    Article  Google Scholar 

  66. Sakai Y, Inoue K, Maeda H. New high-strength, high-conductivity Cu-Ag alloy sheets. Acta Metall Mater, 1995, 43: 1517–1522

    Article  Google Scholar 

  67. Tian Y Z, Zhang Z F. Bulk eutectic Cu-Ag alloys with abundant twin boundaries. Scripta Mater, 2012, 66: 65–68

    Article  Google Scholar 

  68. Tian Y Z, Wu S D, Zhang Z F, et al. Microstructural evolution and mechanical properties of a two-phase Cu-Ag alloy processed by high-pressure torsion to ultrahigh strains. Acta Mater, 2011, 59: 2783–2796

    Article  Google Scholar 

  69. Tian Y Z, Wu S D, Zhang Z F, et al. Comparison of microstructures and mechanical properties of a Cu-Ag alloy processed using different severe plastic deformation modes. Mater Sci Eng-A, 2011, 528: 4331–4336

    Article  Google Scholar 

  70. Freudenberger J, Lyubimova J, Gaganov A, et al. Non-destructive pulsed field CuAg-solenoids. Mater Sci Eng-A, 2010, 527: 2004–2013

    Article  Google Scholar 

  71. Chang L L, Wen S, Li S L, et al. Strain softening during tension in cold drawn Cu-Ag alloys. Mater Charact, 2015, 108: 145–151

    Article  Google Scholar 

  72. Bernasconi R, Hart J L, Lang A C, et al. Structural properties of electrodeposited Cu-Ag alloys. Electrochim Acta, 2017, 251: 475–481

    Article  Google Scholar 

  73. Bao G, Xu Y, Huang L, et al. Strengthening effect of Ag precipitates in Cu-Ag alloys: A quantitative approach. Mater Res Lett, 2016, 4: 37–42

    Article  Google Scholar 

  74. Zhang L, Meng L. Microstructure and properties of Cu-Ag, Cu-Ag-Cr and Cu-Ag-Cr-RE alloys. Mater Sci Tech, 2003, 19: 75–79

    Article  Google Scholar 

  75. Liu J B, Zeng Y W, Meng L. Crystal structure and morphology of a rare-earth compound in Cu-12wt.% Ag. J Alloys Compd, 2009, 468: 73–76

    Article  Google Scholar 

  76. Zeng Y, Mu S, Wu P, et al. Relative effects of all chemical elements on the electrical conductivity of metal and alloys: An alternative to Norbury-Linde rule. J Alloys Compd, 2009, 478: 345–354

    Article  Google Scholar 

  77. Dahl O. Über die struktur und die vergütbarkeit der Cu-reichen Cu-Mg-und Cu-Mg-Sn-legierungen. Wiss Veröffentl Siemens-Konzern, 1927, 6: 222–234

    Google Scholar 

  78. Böhm H. On precipitation behavior of binary Cu alloys and its influence due to alloying. Z Melallk, 1961, 52: 564–571

    Google Scholar 

  79. Tsubakino H, Nozato R. Discontinuous precipitation in Cu-Mg alloys. J Mater Sci-Mater Electron, 1984, 19: 3013–3020

    Google Scholar 

  80. Coughanowr C. Assessment of the Cu-Mg system. Zeitschrift fur Metallkunde, 1991, 82: 574–581

    Google Scholar 

  81. Buhler T, Fries S G, Spencer P J, et al. A thermodynamic assessment of the Al-Cu-Mg ternary system. J Phase Equil, 1998, 19: 317–333

    Article  Google Scholar 

  82. Gorsse S, Shiflet G J. A thermodynamic assessment of the Cu-Mg-Ni ternary system. Calphad, 2002, 26: 63–83

    Article  Google Scholar 

  83. Gorsse S, Ouvrard B, Gouné M, et al. Microstructural design of new high conductivity-high strength Cu-based alloy. J Alloys Compd, 2015, 633: 42–47

    Article  Google Scholar 

  84. Ma A, Zhu C, Chen J, et al. Grain refinement and high-performance of equal-channel angular pressed Cu-Mg alloy for electrical contact wire. Metals, 2014, 4: 586–596

    Article  Google Scholar 

  85. Zhu C, Ma A, Jiang J, et al. Effect of ECAP combined cold working on mechanical properties and electrical conductivity of Conform-produced Cu-Mg alloys. J Alloys Compd, 2014, 582: 135–140

    Article  Google Scholar 

  86. Li Y, Xiao Z, Li Z, et al. Microstructure and properties of a novel Cu-Mg-Ca alloy with high strength and high electrical conductivity. J Alloys Compd, 2017, 723: 1162–1170

    Article  Google Scholar 

  87. Kozlenkova N I, Pantsyrnyi V I, Nikulin A D, et al. Electrical conductivity of high-strength Cu-Nb microcomposites. IEEE Trans Magn, 1996, 32: 2921–2924

    Article  Google Scholar 

  88. Thilly L, Lecouturier F, Coffe G, et al. Ultra high strength nanocomposite conductors for pulsed magnet windings. IEEE Trans Appl Supercond, 2000, 10: 1269–1272

    Article  Google Scholar 

  89. Misra A, Thilly L. Structural metals at extremes. MRS Bull, 2010, 35: 965–977

    Google Scholar 

  90. Raabe D, Choi P P, Li Y, et al. Metallic composites processed via extreme deformation: Toward the limits of strength in bulk materials. MRS Bull, 2010, 35: 982–991

    Article  Google Scholar 

  91. Thilly L, Lecouturier F, Coffe G, et al. Ultra high strength nanofilamentary conductors: the way to reach extreme properties. Phys B-Condensed Matter, 2001, 294–295: 648–652

    Article  Google Scholar 

  92. Hong S I, Hill M A. Mechanical and electrical properties of heavily drawn Cu-Nb microcomposites with various Nb contents. J Mater Sci, 2002, 37: 1237–1245

    Article  Google Scholar 

  93. Pantsyrnyi V I. Status and perspectives for microcomposite winding materials for high field pulsed magnets. IEEE Trans Appl Supercond, 2002, 12: 1189–1194

    Article  Google Scholar 

  94. Pelton A R, Laabs F C, Spitzig W A, et al. Microstructural analysis of in-situ Cu-Nb composite wires. Ultramicroscopy, 1987, 22: 251–265

    Article  Google Scholar 

  95. Vidal V, Thilly L, Vanpetegem S, et al. Plasticity of nanostructured Cu-Nb-based wires: Strengthening mechanisms revealed by in situ deformation under neutrons. Scripta Mater, 2009, 60: 171–174

    Article  Google Scholar 

  96. Sandim H R Z, Sandim M J R, Bernardi H H, et al. Annealing effects on the microstructure and texture of a multifilamentary Cu-Nb composite wire. Scripta Mater, 2004, 51: 1099–1104

    Article  Google Scholar 

  97. Vidal V, Thilly L, Lecouturier F, et al. Effects of size and geometry on the plasticity of high-strength copper/tantalum nanofilamentary conductors obtained by severe plastic deformation. Acta Mater, 2006, 54: 1063–1075

    Article  Google Scholar 

  98. Liang M, Lu Y F, Chen Z L, et al. Characteristics of high strength and high conductivity Cu-Nb micro-composites. IEEE Trans Appl Supercond, 2010, 20: 1619–1621

    Article  Google Scholar 

  99. Botcharova E, Freudenberger J, Schultz L. Cu-Nb alloys prepared by mechanical alloying and subsequent heat treatment. J Alloys Compd, 2004, 365: 157–163

    Article  Google Scholar 

  100. Lei R S, Wang M P, Li Z, et al. Structure evolution and solid solubility extension of copper-niobium powders during mechanical alloying. Mater Sci Eng-A, 2011, 528: 4475–4481

    Article  Google Scholar 

  101. Lei R, Xu S, Wang M, et al. Microstructure and properties of nanocrystalline copper-niobium alloy with high strength and high conductivity. Mater Sci Eng-A, 2013, 586: 367–373

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JiaBin Liu or HongTao Wang.

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2017YFB1200800), the National Natural Science Foundation of China (Grant Nos. 11725210, 51827810 and 51637009), the Fundamental Research Funds for the Central Universities (Grant No. 2018XZZX001-05), and the Zhejiang Xinmiao Talent Projects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Ma, Z., Lei, C. et al. High strength and high conductivity Cu alloys: A review. Sci. China Technol. Sci. 63, 2505–2517 (2020). https://doi.org/10.1007/s11431-020-1633-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1633-8

Keywords

Navigation